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Abstract

Despite their great success in image recognition tasks, deep neural networks (DNNs) have been
observed to be susceptible to universal adversarial perturbations (UAPs) which perturb all input samples
with a single perturbation vector. However, UAPs often struggle in transferring across DNN architectures
and lead to challenging optimization problems. In this work, we study the transferability of UAPs by
analyzing equilibrium in the universal adversarial example game between the classifier and UAP adversary
players. We show that under mild assumptions the universal adversarial example game lacks a pure Nash
equilibrium, indicating UAPs’ suboptimal transferability across DNN classifiers. To address this issue,
we propose Universal Adversarial Directions (UADs) which only fix a universal direction for adversarial
perturbations and allow the perturbations’ magnitude to be chosen freely across samples. We prove that
the UAD adversarial example game can possess a Nash equilibrium with a pure UAD strategy, implying
the potential transferability of UADs. We also connect the UAD optimization problem to the well-known
principal component analysis (PCA) and develop an efficient PCA-based algorithm for optimizing UADs.
We evaluate UADs over multiple benchmark image datasets. Our numerical results show the superior
transferability of UADs over standard gradient-based UAPs.

1 Introduction
Deep neural networks (DNNs) have achieved great success in many supervised learning problems from
computer vision [1], speech recognition [2], natural language processing [3], and computational biology [4].
Their performance, however, has been observed to be highly susceptible to small perturbations to the neural
network’s input data widely recognized as adversarial attacks [5, 6, 7]. A typical adversarial attack scheme
assigns a norm-bounded perturbation to an input feature vector, where the designed perturbation is intended
to fool either a known DNN (white-box adversarial attacks) or an unknown DNN (black-box adversarial
attacks) to predict a wrong label. Over the recent years, adversarial attack and robust training schemes have
received enormous attention in the machine learning community.

An adversarial attack scheme typically designs different perturbation vectors for different input data. This
property allows the attack algorithm to tailor the designed perturbation to every specific input sample and
further empowers the adversary to attain higher success rates in misleading a DNN machine. On the other
hand, the influential study by [8] has empirically shown the existence of a universal adversarial perturbation
(UAP) that can change the target classifier’s predictions over a significant fraction of input samples. As
demonstrated in this work and several other papers on universal perturbations [9, 10, 11, 12], while UAPs
are highly constrained across different input data, they still manage to achieve a fair success rate on unseen
test data.

While UAPs can successfully attack a target DNN machine, the recent papers [13, 14] have reported that
UAPs generated by standard gradient-based methods could weakly transfer to unobserved DNN classifiers
different from the source DNN used for their construction. Specifically, the reported results suggest that
gradient-based UAPs perform noticeably weaker than standard PGD adversarial perturbations in transferring
to an unseen DNN architecture. Such observations motivate the following question:

Why do gradient-based UAPs perform suboptimally in transferring to different DNN classifiers?
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The answer to the above question will play a key role in understanding and improving the generalization
and transferability properties of universal perturbations. In this work, we focus on the above question and
apply a max-min approach to examine the transferability features of UAPs. The applied max-min framework
extends the adversarial example game introduced by [15] for generating transferable adversarial examples to
the setting of universal adversarial perturbations. According to the adversarial example game, the adversary
attempts to find an attack strategy for generating adversarial examples that achieves the maximum success
rate against the most robust classifier from a given function space. We show that under some mild assumptions
on a DNN architecture, every universal attack scheme can be completely thwarted by the classifier player.
From a game-theoretic perspective, the universal adversarial example game possesses no pure Nash equilibria
where the players’ deterministic strategies are simultaneously optimal. Consequently, while a gradient-based
UAP can significantly drop the performance of a fixed target DNN, the same UAP may have limited impact
on a modified DNN function.

To study and address the transferability suboptimality of gradient-based UAPs, we introduce a variant of
universal adversarial perturbations which we call Universal Adversarial Directions (UADs). According to the
UAD approach, the adversary is only constrained to generate the perturbations along a unique direction in
the sample space. Therefore, the UAD perturbations are no longer required to share the same magnitude and
could be chosen differently for different input samples. In particular, unlike gradient-based UAPs, the UAD
adversary has the freedom of choosing not to perturb an input sample, which sounds a sensible option in the
evaluation of a universal adversarial attack scheme.

In order to find an effective UAD, we introduce a bilevel max-max optimization problem and propose a
projected gradient-based algorithm to find a stationary solution in its optimization landscape. Moreover,
we develop an efficient principal component analysis (PCA)-based approach to approximate the solution to
the UAD optimization problem. The PCA-based method indeed finds the top principle component of the
matrix of unnormalized fast gradient method (FGM) perturbations to training data. We provide a stochastic
optimization algorithm for computing the solution to the PCA-based optimization problem that is suitable
for large-scale machine learning problems.

We perform theoretical analysis of the equilibrium properties of the UAD adversarial example game. We
show that under the assumption that the Fast Gradient Method (FGM)-perturbation matrix has a unique
top principal component, the PCA-based approximate UAD game will possess a Nash equilibrium with
a pure strategy for the universal adversary. This result indicates the existence of a single UAD with the
maximum impact on the most robust classifier. In the general case, our analysis suggests an extension of the
UAD framework to rank-constrained adversarial attacks where the designed perturbations are restricted to a
low-rank linear subspace. We show that the rank-constrained adversarial example game will generally possess
a Nash equilibrium with a pure adversarial attack strategy.

Finally, we discuss the results of several numerical experiments comparing the performance of UAPs and
UADs over standard image datasets and DNN architectures. Our experimental results support the better
transferability and generalizability of UADs over gradient-base UAPs. In addition, the numerical results
suggest that the designed UAD can be applied as a universal perturbation with a similar or even better
performance than gradient-based UAP attack schemes. We can summarize the main contributions of our
work as follows:

• Analyzing the transferability of universal adversarial perturbations through the max-min framework of
adversarial example games

• Proposing universal adversarial directions (UADs) as an extension of universal adversarial perturbations

• Proving the existence of Nash equilibiria with a pure UAD attack strategy in universal adversarial
direction games

• Developing an efficient PCA-based algorithm for optimizing UADs

• Conducting an empirical study of the performance of UADs compared to gradient-based UAPs.
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1.1 Related Work
Since their introduction by [8], universal adversarial attacks have been extensively studied in the machine
learning literature. The related literature includes a large body of papers on generating universal perturbations
[16, 17, 18, 19, 13, 20], black-box universal perturbations [21, 22], and on defense methods against universal
adversarial attacks [23, 24, 25]. In our work, we focus on the gradient-based universal adversarial perturbations
maximizing the perturbed loss function, which as discussed by [24] nicely connects to the bilevel optimization
problem of universal adversarial example games. We note that the iterative deepfool-based approach in [8],
the singular vector-based approach in [16], and generative model-based method in [13] are indeed different
from our analyzed gradient-based UAPs which better match our formulation of UAD optimization problems.

In addition, the equilibrium and convergence properties of adversarial example games have been analyzed
in several recent papers. The related works [15, 26, 27] focus on the max-min framework of designing
transferable adversarial perturbations. Specifically, [26] prove that the standard adversarial example game
generally lacks pure Nash equilibria and proposes finding the mixed Nash equilibria of the adversarial example
game. Also, the analysis by [28] focuses on the adversarial training game with standard adversarial attacks.
We note that the mentioned papers focus on the standard adversarial attack setting which does not directly
apply to universal perturbations. On the other hand, the related papers [24, 29] focus on the sequential game
of universal adversarial training where the classifier moves first followed by the universal adversary. While
this sequence leads to robust classifiers against universal perturbations, it does not address the max-min
game of transferable universal perturbations which we discuss in our work.

In another related work, [16] use the singular vectors of the DNN’s Jacobian matrices at different layers as
universal perturbations. On the other hand, our approximate UAD framework chooses the top right-singular
vector of the DNN loss’s gradient with respect to training data as a universal adversarial direction which
allows optimizing the perturbations’ magnitudes unlike [16]’s proposed approach. Similarly, the SVD-based
approach by [30] uses the singular vectors of normalized FGSM and PGD perturbations as UAPs and does
not focus on the single-direction UAD attacks and its game-theoretic aspects. In addition, we theoretically
analyze equilibrium in the UAD adversarial example game. Finally, we note that the SVD-based analyses in
[8, 31] target the data matrix’s singular vectors which is different from our work’s PCA-based analysis of the
loss’s gradient matrix.

2 Preliminaries
In this section, we review some standard definitions and tools regarding standard and universal adversarial
attacks. Throughout the paper, we consider a supervised learning setting where the goal is to predict a label
variable Y ∈ Y from the observation of a d-dimensional feature vector X ∈ X ⊆ Rd. Given a loss function
`(y, y′) for labels y and y′, the standard empirical risk minimization (ERM) learner aims to find a classifier
function f ∈ F minimizing the expected prediction loss over a given function space F .

However, the ERM learner has been observed to lack robustness against norm-bounded adversarial
perturbations. To generate a standard norm-bounded adversarial perturbation for classifier f , input (x, y),
attack norm ‖ · ‖, and attack power ε ≥ 0, the adversary finds an ε-norm-bounded perturbation δ ∈ Rd
maximizing the prediction loss for input x, y:

max
δ: ‖δ‖≤ε

`
(
f(x + δ), y

)
. (1)

In our theoretical analysis, we choose the attack norm function as the standard L2 (Euclidean) norm. Note
that the perturbation designed by solving (1) is a function of input data (x, y), which can result in different
perturbations for different input samples.

On the other hand, a universal adversarial perturbation (UAP) adds the same perturbation to all input
data points. Given n training samples (xi, yi)

n
i=1, a standard approach to design a UAP is through the

following optimization problem maximizing the averaged prediction loss for the universally-perturbed training
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data:

max
δ: ‖δ‖≤ε

1

n

n∑
i=1

`
(
f(xi + δ), yi

)
. (2)

Given an adversarial attack scheme, an adversarial training method trains the classifier using the generated
adversarial examples. As a result, the standard adversarial training method [32] solves the following min-max
optimization problem where the perturbations are generated separately for different input data:

min
f∈F

1

n

n∑
i=1

[
max

δi: ‖δi‖≤ε
`
(
f(xi + δi), yi

) ]
≡ min

f∈F
max

δ1,...,δn:
∀i, ‖δi‖≤ε

1

n

n∑
i=1

[
`
(
f(xi + δi), yi

)]
(3)

To perform universal adversarial training through UAPs, [24] introduce the following min-max optimization
problem:

min
f∈F

max
δ: ‖δ‖≤ε

1

n

n∑
i=1

[
`
(
f(xi + δ), yi

)]
. (4)

Note that the standard and universal adversarial training problems have different maximization variables,
where the maximization variable in the standard adversarial training problem (3) has a size dependent on the
training set size n, while the the maximization variable in the universal adversarial training (4) is independent
of the number of training examples.

3 Universal Adversarial Example Games
In this section, we aim to analyze the transferability features of UAPs. To do this, we extend the adversarial
example game framework introduced by [15] to the setting of universal perturbations. This extension, which
we call the universal adversarial example game, is based on the following max-min optimization problem
searching for the most transferable norm-bounded UAP δ ∈ Rd against the most robust classifier over function
space F :

max
δ: ‖δ‖≤ε

min
f∈F

1

n

n∑
i=1

`
(
f(xi + δ), yi

)
. (5)

Note that the above bilevel optimization problem represents a zero-sum game where the UAP player designing
an ε-norm-bounded universal perturbation δ ∈ Rd moves first followed by the classifier player f ∈ F predicting
the label from the universally-perturbed feature vector. The solution to this max-min problem provides the
most transferable universal perturbation with the highest worst-case impact on the classifiers in F .

Also, we highlight the difference between the above max-min optimization problem and the min-max
problem of universal adversarial training [24, 29]. Although these two problems only differ in the order of
minimization and maximization, they do not necessarily share the same solution as the game could lack a
pure Nash equilibrium where the deterministic minimization and maximization strategies are simultaneously
optimal. In the following theorem, we indeed show that under a mild assumption on classifier space F which
applies to multi-layer DNN architectures, every universal perturbation achieves the same transferability score
against the robust classifier, revealing that the min-max and max-min problems have different solutions.

Theorem 1. Suppose that for every f ∈ F and bias vector b ∈ Rd the function fb : Rd → R defined as
fb(x) := f(x + b) still belongs to F . Then,

• The minimized objective function in (5) over function space F takes the same value for every choice of
δ ∈ Rd.

• The universal adversarial example game has no Nash equilibria with a non-zero pure strategy δ∗ 6= 0 for
the UAP adversary.

Proof. We defer the proof to the Appendix.
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Theorem 1 observes that if the classifier set F is closed under the addition of an input bias vector, then
the effect of a UAP can be reversed by subtracting the UAP using the bias vector. Hence, one can expect
that a UAP could struggle in transferring to other DNN classifiers, since its effect is reversible. In next
section, we discuss how to improve the performance of universal perturbations by addressing the reversibility
of UAPs in the adversarial example game.

4 Universal Adversarial Directions
To address the lack of pure Nash equilibria in the universal adversarial example game, we propose a modified
notion of universal perturbations. One of the main factors preventing the UAP game from reaching an
equilibrium is the UAP adversary’s restriction to apply the same perturbation to all input data. As a result, a
classifier that knows the UAP in advance can easily reverse the effect of the fixed perturbation. Based on this
discussion, we propose considering a universal adversary capable of choosing between adding the universal
perturbation or not adding the perturbation for every individual sample. Such a universal adversarial attack
is therefore only constrained to generate all the perturbations along the same direction. The discussion
motivates the definition of a universal adversarial direction.

Definition 1. We call a unit-norm δ a universal adversarial direction (UAD) if the adversarial perturbation
δ(x, y) designed for every input (x, y) is aligned with δ, i.e. δ(x, y) = τx,yδ holds for a scalar τx,y ∈ R.

To generate a powerful UAD with the maximum impact on a given classifier f , we propose solving the
following optimization problem:

max
δ: ‖δ‖≤1

1

n

n∑
i=1

[
max

τi∈R: |τi|≤ε
`
(
f(xi + τiδ), yi

)]
≡ max

δ,τ1,...,τn:
‖δ‖≤1, ∀i: |τi|≤ε

1

n

n∑
i=1

[
`
(
f(xi + τiδ), yi

)]
(6)

In the above formulation, every scalar variable τi represents the magnitude of the additive perturbation τiδ
for the ith data point (xi, yi). Note that all the perturbations are constrained to be along the optimization
variable δ. Taking a standard gradient-based approach to optimize the UAD-based objective function in
(6), one can apply the projected gradient method (PGM). Here, the optimization variables δ, τ1, . . . , τn are
optimized using the projected gradient ascent algorithm. To derive a stochastic version of the optimization
algorithm using a mini-batch of training data at every iteration, we propose Algorithm 1 applying stochastic
projected gradient ascent to solve the UAD problem.

5 A PCA-based Approach to Universal Adversarial Directions
In the previous section, we defined UADs and introduced a gradient-based algorithm for solving the UAD
optimization problem. However, since the underlying UAD optimization task maximizes a non-concave
objective function, the algorithm is only guaranteed to find a first-order stationary solution under regularity
assumptions. In this section, we use a Taylor series-based approximation of the UAD optimization objective
to relate the optimal UAD to the top principal component of the fast gradient method (FGM) perturbation
matrix. This connection results in an analytically tractable optimization problem for approximating the
optimal UAD, which facilitates the analysis of UADs.

To build the connection, we focus on the following Lagrangian version of the UAD optimization problem
for a coefficient λ > 0 replacing the role of attack power ε in the UAD problem:

max
δ: ‖δ‖≤1

1

n

n∑
i=1

[
max
τi∈R

`
(
f(xi + τiδ), yi

)
− λ

2
τ2
i

]
. (7)
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Algorithm 1 UAD-Projected Gradient Ascent
Initialize perturbation δ0, stepsizes η1, η2, batch-size B, number of inner updates K
for t = 0, · · · , T − 1 do

Draw a mini-batch of samples (xti , yti)
B
i=1

Initialize magnitudes τ0
1 , . . . , τ

0
B

for k = 0, · · · ,K − 1 do

∀i : τk+1
i = τki + η2

d`
(
f(xti + τki δ

t), yti
)

dτ
∀i : τk+1

i = min{max{τk+1
i ,−ε}, ε}

end

δt+1 = δt +
η1

B

B∑
i=1

∇δ`
(
f(xti + τKi δ

t), yti
)

δt+1 =
δt+1

max{1, ‖δt+1‖}

end
Output δ = δT

Proposition 1. Suppose that ` ◦ f is a ρ-smooth differentiable function of the input feature vector x, i.e.
for every x,x′, y we have ‖∇x`(f(x), y)−∇x`(f(x′), y)‖ ≤ ρ‖x− x′‖. Assuming that ‖δ‖2 ≤ B holds with
probability 1 and λ > Bρ, the following inequalities hold for every sample (xi, yi):

1

2(λ+Bρ)

(
δ>∇x`(f(xi), yi)

)2 ≤ max
τi∈R

{
`
(
f(xi + τiδ), yi

)
− λ

2
τ2
i

}
− `(f(xi), yi)

≤ 1

2(λ−Bρ)

(
δ>∇x`(f(xi), yi)

)2 (8)

Proof. We defer the proof to the Appendix.

The above proposition suggests optimizing the above upper-bound on the UAD optimization objective
function approximating the objective function within an error factor of λ+ρ

λ−ρ :

max
δ: ‖δ‖≤1

1

n

n∑
i=1

[
`(f(xi), yi) +

(
δ>∇x`(f(xi), yi)

)2
2(λ− ρ)

]

≡ 1

n

n∑
i=1

[
`(f(xi), yi)

]
+

1

2(λ− ρ)
max

δ: ‖δ‖≤1

{
δ>
(

1

n

n∑
i=1

∇x`(f(xi), yi)∇x`(f(xi), yi)
>
)
δ

}
. (9)

We observe that the solution to the above optimization problem is indeed the top principal component, i.e.
the top right-singular vector, of the following matrix GS(f) including the loss’s gradient for classifier f with
respect to training samples in dataset S = {(xi, yi)ni=1}:

GS(f) :=
1√
n


∇x`

(
f(x1), y1

)
...

∇x`
(
f(xn), yn

)

n×d

(10)
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Algorithm 2 UAD-Principal Component Analysis
Initialize perturbation δ0, stepsize η, batch-size B
for t = 0, · · · , T − 1 do

Draw a mini-batch of samples (xti , yti)
B
i=1

δt+1 = δt +
η

B

B∑
i=1

[(
δt
>∇x`

(
f(xti), yti

))
∇x`

(
f(xti), yti

)]
δt+1 =

δt+1

max{1, ‖δt+1‖}

end
Output δ = δT

The above matrix contains the unnormalized fast gradient method (FGM) perturbations as its rows. Note
that if we perform a similar first-order approximation analysis for the UAP optimization, the approximate
solution will be the mean of the rows of the above matrix. Therefore, according to the above first-order
analysis, the UAD framework approximately substitutes the average row of the loss’s gradients used by the
UAP approach with the gradient matrix’s top principal component, which could better capture the existing
structures in the FGM-perturbation matrix GS(f). We note that the tractability of the PCA-based approach
is due to the choice of `2-norm for the universal direction. For other `p-norm functions, the computation of
the optimal universal direction could be intractable.

Inspired by several recent works applying stochastic optimization methods for computing the top singular
vector [33, 34], we propose Algorithm 2 to compute the PCA-based approximation of the optimal UAD. In
particular, the stochastic nature of Algorithm 2 suits large-scale machine learning problems where a direct
application of the singular value decomposition (SVD) algorithm could be computationally difficult.

6 Nash Equilibria in UAD Games
We previously discussed that UAPs suffer from the lack of equilibria in the universal adversarial example
game. In this section, our aim is to show that a similar zero-sum game adapted for our proposed UADs will
indeed possess a non-trivial Nash equilibrium, where a fixed non-zero direction is the most effective UAD
against any classifier in function space F the most. To prove such a guarantee, we first define the universal
adversarial direction game played between an adversary player searching for the most effective direction
δ ∈ Rd, along which the designed perturbations can mislead the classifier player f ∈ F . Mathematically, we
use the following max-min optimization problem for universal adversarial direction games:

max
‖δ‖≤1

min
f∈F

1

n

n∑
i=1

[
max

τi∈R: |τi|≤ε
`
(
f(xi + τiδ), yi

)]
. (11)

Following the PCA-based approximation of the UAD optimization problem and defining LS(f) = 1
n

∑n
i=1 `

(
f(xi), yi

)
as the averaged prediction loss over unperturbed training data, we can apply Proposition 1 to formulate the
approximate universal adversarial direction game with the following optimization problem with parameter
η > 0:

max
‖δ‖≤1

min
f∈F

1

n

n∑
i=1

[
`
(
f(xi), yi

)
+ η
(
δ>∇x`

(
f(xi), yi

))2]
= max
‖δ‖≤1

min
f∈F

LS(f) + ηδ>GS(f)GS(f)>δ. (12)
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Therefore, the min-max problem corresponding to the above approximate UAD optimization task reduces
to the following one-level optimization problem where ‖ · ‖2 denotes the L2 operator norm:

min
f∈F

max
‖δ‖≤1

LS(f) + ηδ>GS(f)GS(f)>δ ≡ min
f∈F

LS(f) + η
∥∥GS(f)

∥∥2

2
. (13)

The following theorem proves that if for every minimizer f∗ ∈ F of the above objective function, the matrix
GS(f∗) has a unique top singular value, then the approximate universal adversarial example game will possess
a Nash equilibrium with a pure strategy for the UAD adversary.

Theorem 2. Define the approximate UAD objective function V(f) := LS(f) + η
∥∥GS(f)

∥∥2

2
. Suppose that the

matrix set {LS(f)Id + ηGS(f)GS(f)> : f ∈ F}, where Id denotes the identity matrix, is convex and compact.
Then,

• If for every minimizer f∗ ∈ F of V(f) the matrix GS(f∗) has a unique top right-singular vector, there
exists a Nash equilibrium to the approximate universal adversarial example game with a pure strategy
δ∗ ∈ Rd for the UAD adversary.

• If for every minimizer f∗ ∈ F of V(f) the matrix GS(f∗) has the top singular value with multiplicity at
most r, the approximate universal adversarial example game has a mixed Nash equilibrium where the
UAD player always chooses the adversarial direction from a universal r-dimensional space ∆r ∈ Rr×d
spanned by a group of r universal vectors {δ∗1 , . . . , δ∗r}.

Proof. We defer the proof to the Appendix.

The above theorem shows that unlike the UAP adversarial example game, the UAD-based game can
indeed possess Nash equilibria with a pure or in general rank-constrained strategy for the universal adversary
player. Hence, Theorem 2 indicates that the UAD adversary can apply a non-trivial pure strategy with the
maximum impact on the classifier.

7 Numerical Results
We performed several numerical experiments to evaluate the UAD perturbations’ generalizability and
transferability on benchmark image datasets including ImageNet & TinyImageNet [35], CIFAR-100 & CIFAR-
10 [36], and MNIST [37]. Note that TinyImageNet is a reduced version of standard ImageNet dataset
containing 100,000 images from 200 ImageNet classes, with 500 colored images for each class; CIFAR-100 and
CIFAR-10 consist of 60,000 colored images from 100 and 10 classes, respectively; MNIST contains 70,000
greyscale handwritten digit images from 10 classes.

In our experiments, we target multiple widely-used DNN architectures including ResNet-18, ResNet-
34 (ResNet-50 for ImageNet) [38], DenseNet-121 [39], AlexNet/CaffeNet [1], VGG-19 [40] and the recent
EfficientNet-V2-S [41]. The neural network classifiers were trained for 100 epochs using the minibatch gradient
descent optimization method with a batch-size of 32, learning rate of 3e-4, and weight decay of 1e-4, which
were chosen using cross-validation as detailed in the Appendix.

We generated universal perturbations using the stochastic optimization methods for UAD, UAD-grad,
gradient-based UAP, generative adversarial perturbation (GAP) [18], generalized universal adversarial
perturbation (GUAP) [42] and cross-domain attack (CDA) [43], with bounded norms controlled by parameter
ε = 0.1 · EP̂ [‖X‖2] (fraction of the mean L2-norm of clean training samples).

Universal Perturbations’ Effectiveness. We performed attacks on the aforementioned DNN models
with perturbations generated via UAD (PCA-based Algorithm 2), UAD-grad (gradient-based Algorithm 1),
UAD-mag1, gradient-based UAP, GAP, CDA and GUAP. UAD-mag1 represents the performance of UADs
when directly applied with a constant unit τi = 1 magnitude onto test samples (therefore not optimized
during inference time), which are again more effective than UAPs. In Table 1, we used an attack power
of ε = 0.1 · EP̂ [‖X‖2] to compare the strength of different adversarial attacks; we report the resultant test
accuracies and fooling rates (% of labels flipped by the attack) across datasets.
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Natural and Test Adversarial Accuracies (TA) & Fooling Rates (FR)

Dataset
Model ResNet-18 ResNet-34 (50) DenseNet-121 CaffeNet VGG-19 EfficientNet-V2-S

TA ↓ FR ↑ TA ↓ FR ↑ TA ↓ FR ↑ TA ↓ FR ↑ TA ↓ FR ↑ TA ↓ FR ↑

CIFAR-10

Natural 92.4 0.0 91.9 0.0 92.2 0.0 85.7 0.0 87.9 0.0 86.9 0.0
UAD 11.3 88.4 12.6 85.4 10.3 86.9 24.7 74.0 27.5 71.2 27.4 69.4

UAD-mag1 15.5 84.7 15.5 83.9 12.1 87.8 25.9 73.0 27.6 71.6 35.5 62.2
UAP 44.7 59.5 49.0 67.2 16.7 81.2 66.0 31.2 65.9 31.9 40.4 56.6
GAP 38.5 61.1 39.1 59.9 39.2 60.2 61.8 35.2 40.2 57.6 51.7 46.4
CDA 42.8 56.3 46.0 51.8 25.6 73.8 54.1 40.9 60.7 35.0 51.8 43.5
GUAP 13.5 86.5 15.2 84.1 10.8 88.0 27.7 71.3 30.8 68.0 42.5 59.4

CIFAR-100

Natural 69.2 0.0 70.0 0.0 72.0 0.0 60.1 0.0 63.8 0.0 57.3 0.0
UAD 4.0 91.9 8.2 89.3 4.6 97.5 4.0 95.3 5.9 87.0 8.9 84.8

UAD-mag1 7.7 91.9 9.6 89.4 10.8 88.2 4.6 95.1 7.4 91.8 6.3 84.6
UAP 15.9 82.7 29.8 67.9 14.6 81.3 13.2 80.7 31.0 64.8 19.8 70.0
GAP 15.9 83.0 19.8 78.1 19.8 78.6 25.7 70.3 12.5 86.5 19.4 77.7
CDA 24.5 72.6 28.4 68.1 16.3 82.0 32.3 58.1 38.4 56.3 19.8 77.0
GUAP 4.8 90.9 8.0 91.3 6.1 93.8 5.2 94.3 6.6 86.3 7.2 86.9

Tiny-
ImageNet

Natural 51.5 0.0 51.5 0.0 54.4 0.0 37.4 0.0 29.5 0.0 36.6 0.0
UAD 1.2 98.2 1.0 98.6 1.6 98.3 3.3 98.1 0.4 99.4 1.3 97.4

UAD-mag1 1.5 98.1 2.4 97.5 2.4 97.8 4.4 97.2 0.8 98.9 2.7 97.8
UAP 3.2 93.9 5.2 95.3 6.3 95.1 4.0 89.8 3.1 96.9 2.3 98.3
GAP 6.2 92.8 3.4 96.3 9.2 90.0 8.4 87.9 4.8 93.1 5.1 93.2
CDA 4.8 94.5 3.9 95.3 7.7 91.2 9.4 85.8 4.3 93.9 3.3 97.0
GUAP 1.6 97.9 0.9 98.0 1.8 98.3 4.1 96.5 0.8 99.3 2.6 97.2

ImageNet

Natural 69.8 0.0 76.1 0.0 74.4 0.0 56.5 0.0 74.2 0.0 84.2 0.0
UAD 4.0 96.7 5.7 94.8 8.9 90.0 4.0 96.3 4.1 94.6 4.3 95.2

UAD-mag1 4.9 93.6 6.6 92.2 11.7 87.2 6.1 92.6 7.2 92.2 6.1 92.7
UAP 19.4 71.4 34.6 56.3 22.5 67.9 18.6 76.9 22.5 79.8 10.9 78.8
GAP 14.4 73.5 19.9 69.0 20.7 69.3 12.0 81.5 19.2 84.0 17.7 71.4
CDA 20.4 75.2 35.2 61.8 29.3 68.2 14.9 80.1 22.4 77.4 27.1 67.3
GUAP 4.5 95.2 5.7 93.1 11.5 86.5 4.1 96.2 4.1 96.2 4.3 94.4

Table 1: UAD, UAD-mag1, UAP, GAP, CDA & GUAP perturbations’ effectiveness and fooling rates. The
numbers show adversarial test accuracy (the lower the more effective) and fooling rate (the higher the better).

We further report the fooling rates for UAD-PCA, UAD-grad and UAP perturbations with ε =
.1, .05, .02, .01 · EP̂ [‖X‖2] in the Appendix Tables 3, 4 and 5, for a more fine-grained comparison. In
addition to the quantitative scores, we also visualized perturbations generated by the UAD (UAD-PCA),
UAD-grad and gradient-based UAP adversaries in Figure 1, with ε = 0.1 · E[‖X‖2] adversarial noise on
backbone models; in Figure 4, where horizontal rows correspond to perturbations with decreasing powers
(0.1, 0.05, 0.02, 0.01). We see that the UAD adversary creates more regular noise patterns with enhanced
semantic locality than UAP.

Transferability. We further benchmarked the transferability (from the source DNN to other target
DNNs) capabilities of UAD and UAP adversaries on ImageNet, TinyImageNet, CIFAR-100 and CIFAR-10.
We compare UAD and UAP via Table 2a, which shows the cosine similarity scores between perturbations
designed for different networks; and via Table 2b, which displays the accuracy-based transferred fooling rates
(TFR in (22)) of perturbations when transferred from the source network (for which it was designed) and
applied to attack the target network.

As observed from Table 2a, while gradient-based UAPs designed for different DNNs were almost orthogonal
to one another, the UADs achieve higher cosine similarity scores across the DNN architectures. Corresponding
cosine similarity and TFR results for CIFAR-10, CIFAR-100 and TinyImageNet are included in Tables 6a, 7a
& 8a and 6b, 7b & 8b of the Appendix. Finally, in Figures 5, 6, 7 and 8 in the Appendix, we visualized the
bar plot of the sorted singular values (descending order) for the attempted datasets and architectures. We
observe that the loss’s gradient matrix GS(f) for the UAD perturbation has always a unique top singular
value.
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Figure 1: ImageNet visualizations of UAD-PCA, UAD-grad, UAP noise at ε = 0.1 · E[‖X‖2]

UAD Cosine Similarities for ImageNet

Tar / Src R18 R50 D121 Alex VGG Eff2s
R18 1.00 -0.29 0.18 -0.29 0.21 0.25
R50 -0.29 1.00 0.19 -0.24 0.35 0.30
D121 0.18 0.19 1.00 0.17 -0.14 0.13
Alex -0.29 -0.24 0.17 1.00 -0.25 0.32
VGG 0.21 0.35 -0.14 -0.25 1.00 0.31
Eff2s 0.25 0.30 0.13 0.32 0.31 1.00

UAP Cosine Similarities for ImageNet

Tar / Src R18 R50 D121 Alex VGG Eff2s
R18 1.00 0.00 -0.01 -0.01 -0.01 0.00
R50 0.00 1.00 0.01 0.00 -0.00 0.00
D121 -0.01 0.01 1.00 -0.01 0.00 0.00
Alex -0.01 0.00 -0.01 1.00 0.00 -0.01
VGG -0.01 -0.00 0.00 0.00 1.00 0.00
Eff2s 0.00 0.00 0.00 -0.01 0.00 1.00

(a) Cosine similarity scores for UAD & UAP on ImageNet.

UAD TFR for ImageNet

Tar / Src R18 R50 D121 Alex VGG Eff2s
R18 0.967 0.741 0.566 0.674 0.617 0.603
R50 0.804 0.948 0.512 0.693 0.585 0.770
D121 0.545 0.571 0.900 0.454 0.549 0.710
Alex 0.792 0.762 0.470 0.963 0.649 0.550
VGG 0.698 0.667 0.518 0.674 0.946 0.554
Eff2s 0.795 0.785 0.760 0.452 0.503 0.952

UAP TFR for ImageNet

Tar / Src R18 R50 D121 Alex VGG Eff2s
R18 0.714 0.620 0.360 0.548 0.511 0.423
R50 0.639 0.563 0.311 0.417 0.412 0.588
D121 0.318 0.352 0.679 0.313 0.350 0.423
Alex 0.631 0.614 0.105 0.769 0.427 0.338
VGG 0.540 0.484 0.222 0.540 0.798 0.252
Eff2s 0.439 0.529 0.523 0.213 0.241 0.788

(b) Transferred fooling rates for UAD & UAP on ImageNet.

Table 2: UAD and UAP cross-network transferability comparison.

8 Conclusion
In this work, we introduced universal adversarial directions (UADs) as a new variant of universal attacks. We
provided theoretical evidence that while the universal adversarial example game lacks pure Nash equilibria,
the universal adversarial direction game can possess an equilibrium with a pure strategy for the universal
adversary. In addition, our numerical results indicate the improved transferability of the UAD adversary in
comparison to gradient-based universal perturbations. Our analysis further introduces a potential extension
of the UAD framework to rank-constrained adversarial attack and training schemes. Another interesting
future direction to our work is to apply the proposed game-theoretic framework to analyze existing generative
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model-based adversarial perturbations. Furthermore, analyzing the challenging min-max optimization problem
of UADs and their computational complexity is another potential extension of our proposed theoretical
framework.
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Appendix A Proofs

A.1 Proof of Theorem 1
According to Theorem 1’s assumption, for every perturbation δ ∈ Rd, the following optimization problems
are equivalent:

min
f∈F

1

n

n∑
i=1

`
(
f(xi + δ), yi

)
(a)
≡ min

f∈F,b∈Rd

1

n

n∑
i=1

`
(
f(xi + b + δ), yi

)
(b)
≡ min

f∈F,b′∈Rd

1

n

n∑
i=1

`
(
f(xi + b′), yi

)
In the above, (a) is a consequence of the theorem’s assumption that for every function f ∈ F and bias vector
b ∈ Rd, fb ∈ F is still a function in F . Also, (b) follows from the change of variable b′ = b + δ in the
optimization problem. Since, the equivalent optimization problem has no dependence on perturbation δ, the
optimal value of the optimization problem is independent from the choice of δ. Therefore, the proof of the
theorem’s first part is complete.

We give a proof by contradiction for the theorem’s second part. To do this, we suppose that for a pure
strategy δ∗ : ‖δ∗‖ ≤ ε and a general mixed strategy over F characterized by probability distribution P ∗, a
Nash equilibrium in the universal adversarial example game is attained. The Nash equilibrium with pure
strategy for the universal adversary implies that:

max
δ: ‖δ‖≤ε

Ef∼P∗
[

1

n

n∑
i=1

`
(
f(xi + δ), yi

)]
≤ Ef∼P∗

[
1

n

n∑
i=1

`
(
f(xi + δ∗), yi

)]

≤ min
f∈F

1

n

n∑
i=1

`
(
f(xi + δ∗), yi

)
.

However, as shown earlier, due to the theorem’s assumption on function class F , for every vector δ ∈ Rd we
have

min
f∈F

1

n

n∑
i=1

`
(
f(xi + δ∗), yi

)
= min

f∈F

1

n

n∑
i=1

`
(
f(xi + δ), yi

)
. (14)

Therefore, every δ̃ ∈ Rd satisfies:

max
δ: ‖δ‖≤ε

Ef∼P∗
[

1

n

n∑
i=1

`
(
f(xi + δ), yi

)]
≤ min

f∈F

1

n

n∑
i=1

`
(
f(xi + δ̃), yi

)
≤ Ef∼P∗

[
1

n

n∑
i=1

`
(
f(xi + δ̃), yi

)]
.

The above inequalities imply that the function g∗(δ) := Ef∼P∗
[

1
n

∑n
i=1 `

(
f(xi + δ), yi

)]
takes the same

minimum value for every ε-norm-bounded δ. As a result, the existence of a Nash equilibrium with a pure
adversary strategy implies that at the optimal classifier strategy every norm-bounded universal perturbation
including the zero perturbation leads to a Nash equilibrium, and the minimum averaged loss does not change
by adding any non-zero perturbations. This contradiction of attaining a Nash equilibrium with a trivial
zero-universal-perturbation completes the theorem’s proof.
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A.2 Proof of Proposition 1
To show this proposition, note that under the smoothness assumption in the paper, we have:

`
(
f(xi), yi

)
+ τiδ

>∇x`
(
f(xi), yi

)
− ρ

2
τ2
i ‖δ‖2

≤ `
(
f(xi + τiδ), yi

)
(15)

≤ `
(
f(xi), yi

)
+ τiδ

>∇x`
(
f(xi), yi

)
+
ρ

2
τ2
i ‖δ‖2.

As a result, since ‖δ‖2 ≤ B, we obtain the followings:

max
τi∈R

{
`
(
f(xi), yi

)
+ τiδ

>∇x`
(
f(xi), yi

)
− λ+Bρ

2
τ2
i

}
≤ max

τi∈R

{
`
(
f(xi + τiδ), yi

)
− λ

2
τ2
i

}
≤ max

τi∈R

{
`
(
f(xi), yi

)
+ τiδ

>∇x`
(
f(xi), yi

)
− λ−Bρ

2
τ2
i

}
. (16)

Note that both the upper-bound and lower-bound in the above inequalities represent quadratic optimization
problems, where under the assumption that λ > Bρ, the optimal solutions to the lower-bound and upper-bound
optimization problems will be the followings implied by the first-order necessary condition:

τ li =
1

λ+Bρ
δ>∇x`

(
f(xi), yi

)
, τui =

1

λ−Bρ
δ>∇x`

(
f(xi), yi

)
. (17)

Plugging the optimal solutions into the bounds will lead to the following inequalities:

`
(
f(xi), yi

)
+

1

2(λ+Bρ)

(
δ>∇x`

(
f(xi), yi

))2

≤ max
τi∈R

{
`
(
f(xi + τiδ), yi

)
− λ

2
τ2
i

}
(18)

≤ `
(
f(xi), yi

)
+

1

2(λ−Bρ)

(
δ>∇x`

(
f(xi), yi

))2

.

Therefore, the proof is complete.

A.3 Proof of Theorem 2
Consider the target max-min optimization problem:

max
‖δ‖≤1

min
f∈F

1

n

n∑
i=1

[
`
(
f(xi), yi

)
+ η
(
δ>∇x`

(
f(xi), yi

))2]
= LS(f) + ηδ>GS(f)GS(f)>δ.

In the above max-min optimization problem, we can use the trace operator to rewrite the objective function
as

LS(f) + ηδ>GS(f)GS(f)>δ

= LS(f) + ηTr
(
δ>GS(f)GS(f)>δ

)
= LS(f) + ηTr

(
GS(f)GS(f)>δδ>

)
Here Tr(·) denotes the trace operator, and the above equality holds since the trace operator is linear and
satisfies Tr(AB) = Tr(BA) as long as the matrix multiplications AB, BA are well-defined. Based on the
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above discussion, we apply a change of variables and define the matrix variable ∆ = δδ> which leads to the
following equivalent max-min optimization problem:

max
∆∈Sd

+: ‖∆‖∗≤1

rank(∆)≤1

min
f∈F

LS(f) + ηTr
(
GS(f)GS(f)>∆

)
.

Here, Sd+ denotes the d× d-positive-semidefinite (PSD) cone, ‖ · ‖∗ stands for the nuclear norm, i.e. the sum
of a matrix’s singular values, and rank(·) is the rank of a matrix. Note that the constraints on matrix variable
∆ requires ∆ = δδ> for some vector ‖δ‖ ≤ 1. Also, since GS(f)GS(f)> and ∆ are both PSD matrices,
every solution to the above bilevel optimization problem will take the maximum allowable norm value, i.e.
‖∆∗‖∗ = 1 or equivalently for a PSD matrix we have Tr(∆∗) = 1. Therefore, assuming the loss function
only takes non-negative values, the above max-min problem has the same solution as the following max-min
problem

max
∆∈Sd

+: ‖∆‖∗≤1

rank(∆)≤1

min
f∈F

LS(f) Tr(∆) + ηTr
(
GS(f)GS(f)>∆

)
= max

∆∈Sd
+: ‖∆‖∗≤1

rank(∆)≤1

min
f∈F

Tr

((
LS(f)Id + ηGS(f)GS(f)>

)
∆

)
. (19)

We can define the equivalent problem using the matrix setMF :=
{
LS(f)Id + ηGS(f)GS(f)> : f ∈ F

}
:

max
∆∈Sd

+: ‖∆‖∗≤1

rank(∆)≤1

min
M∈MF

Tr
(
M>∆

)
. (20)

According to the theorem’s assumptionMF is a convex and compact subset of PSD matrices. Also, note
that the objective function Tr

(
M>∆

)
is bi-linear in PSD matrix variables ∆ and M . We also note that the

following superset of the maximization problem’s feasible set {∆ ∈ Sd+ : ‖∆‖∗ ≤ 1} is by definition convex
and compact. As a result, Sion’s minimax theorem [44] implies that the following min-max and max-min
problems share a common saddle-point solution (∆∗,M∗):

max
∆∈Sd

+: ‖∆‖∗≤1
min

M∈MF
Tr
(
M>∆

)
= min

M∈MF
max

∆∈Sd
+: ‖∆‖∗≤1

Tr
(
M>∆

)
. (21)

However, note that since the L2-operator norm (‖ · ‖2) and nuclear norms are dual to each other:

max
∆∈Sd

+: ‖∆‖∗≤1
Tr
(
M>∆

)
= ‖M‖2.

Therefore, based on the theorem’s first assumption that for every minimizer f∗ ∈ F for the min-max
problem, the matrix GS(f∗) has a unique top singular value or equivalently the PSD matrix Mf∗ =
LS(f∗)Id + ηGS(f∗)GS(f∗)> has a unique top eigenvalue, then the corresponding maximization solution
∆∗f∗ will be rank-1, as the matrix’s nuclear norm needs to be concentrated on the top right-singular vector
of GS(f∗). As a result, there exists a shared solution (f∗,∆∗) for the min-max and max-min problems in
(21) where ∆∗ is a rank-1 matrix. Since this solution satisfies the maximization constraints of the original
max-min problem in (20) with the maximization feasible set being a subset of the feasible set in (20), (f∗,∆∗)
will also be a solution to (20). Similarly, (f∗,∆∗) is also a solution to the min-max version of (20), since the
max-min inequality implies that

max
∆∈Sd

+: ‖∆‖∗≤1

rank(∆)≤1

min
M∈MF

Tr
(
M>∆

)
≤ min

M∈MF
max

∆∈Sd
+: ‖∆‖∗≤1

rank(∆)≤1

Tr
(
M>∆

)
and in the above min-max problem, matrix Mf∗ achieves the lower-bound given by the max-min formulation.
Thus, (f∗,∆∗) is a saddle-point for the original max-min optimization problem, and therefore results in a
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pure Nash equilibrium to the approximate universal adversarial direction game. Hence, the proof of the
theorem’s first part is finished.

Next, under the theorem’s second assumption that for every minimizer f∗ ∈ F of the min-max problem,
the corresponding matrix GS(f∗) has a top singular value with multiplicity at most r or equivalently the
PSD matrix Mf∗ = LS(f∗)Id + ηGS(f∗)GS(f∗)> has a maximum eigenvalue with multiplicity at most r,
then we have a saddle point solution (∆∗,Mf∗) for (21) where ∆∗ is of rank r. Therefore, we assume that
the orthonormal unit-norm vectors in {δ∗1 , . . . , δ∗r} are the top eigenvectors of ∆∗. Note that the solution
(∆∗,Mf∗) will solve the following problem since the maximization problem’s feasible set in the following
problem is a subset of the the one in (21).

max
∆∈Sd

+: ‖∆‖∗≤1

rank(∆)≤r

min
M∈MF

Tr
(
M>∆

)
.

In addition, (∆∗,Mf∗) will solve the min-max problem corresponding to the above task, because it achieves
the lower-bound coming from the following max-min inequality

max
∆∈Sd

+: ‖∆‖∗≤1

rank(∆)≤r

min
M∈MF

Tr
(
M>∆

)
≤ min

M∈MF
max

∆∈Sd
+: ‖∆‖∗≤1

rank(∆)≤r

Tr
(
M>∆

)
.

As a result, the rank-r ∆∗ combined with a mixed strategy for the classifier player choosing f ∈ F results in
a mixed Nash equilibrium for the following max-min game:

max
∆∈Sd

+: ‖∆‖∗≤1

rank(∆)≤1

min
Pf∈PF

Ef∼Pf

[
LS(f) Tr(∆) + ηTr

(
GS(f)GS(f)>∆

)]
.

This Nash equilibrium implies the existence of mixed strategies for the universal adversarial direction and
classifier players where the universal adversary always generates the perturbation from the rank-r subspace
of ∆∗’s range spanned by orthonormal vectors in {δ∗1 , . . . , δ∗r}. Therefore, the theorem’s proof is complete.

Appendix B Additional Numerical Experiments

B.1 Additional Numerical Results on UAD-PCA, UAD-grad, and UAP-grad
Attacks

Here, we present the complete numerical results for the visualizations of adversarial perturbations generated
by UAD-PCA, UAD-grad and UAP-grad in Figure 4. The proposed UAD-PCA and UAD-grad both
generated rather semantically meaningful noise patterns, while UAP-grad synthesizes seemingly less meaningful
perturbations without a noteworthy pattern. We further report the fooling rates and achieved adversarial test
accuracies of the three universal attack algorithms, on CIFAR-10, CIFAR-100 and TinyImageNet datasets.
Note that the adversarial test accuracies are presented in Table ??; fooling rates are given in Tables 3, 5, 4
and ??. Furthermore, in histogram Figures 2, 3, we visualize the distribution of optimal τi’s for UAD attacks
on various datasets and architectures (including EfficientNetV2-S). We can see that the UAD framework is
more expressive than UAP, allowing for both positive and negative τi perturbation coefficients with varying
strengths between [−1, 1].
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Figure 2: Distribution of τi ∈ [−1, 1] of UAD attacks on CIFAR-100 and CIFAR-10.

Figure 3: Distribution of τi ∈ [−1, 1] of UAD attacks on TinyImageNet and MNIST.

B.2 Additional Numerical Results on Generalizability and Transferability of
UADs vs. UAPs

To measure the transferability and strength of the perturbations, we quantified the explained transferred
fooling rate of UADs and UAPs across different DNN architectures. τiδa is the transferred (designed for a
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different model) universal attack’s perturbation for sample xi, while τiδm is the original (designed for the
same model) attack’s perturbation. Consider the following evaluation measures:

TP =
∑
i

(
f(xi + τiδa) 6= f(xi)

)
&
(
f(xi + τiδa) = f(xi + τiδm)

)
TN =

∑
i

(
f(xi + τiδa) 6= f(xi)

)
&
(
f(xi + τiδa) 6= f(xi + τiδm)

)
FP =

∑
i

(
f(xi + τiδa) = f(xi)

)
&
(
f(xi + τiδa) 6= f(xi + τiδm)

)
FN =

∑
i

(
f(xi + τiδa) = f(xi)

)
&
(
f(xi + τiδa) 6= f(xi + τiδm)

)
We defined and evaluated the following Transferred Fooling Rate (TFR) score in our experiments:

TFR =
TP + TN

TP + FN + TN + FP
(22)

Intuitively, TP (true positive / explained and transferred ability to fool) means both the transferred and
original adversarial perturbations fool the source model (i.e., the model prediction on the transfer-perturbed
sample is not equal to that on unperturbed sample but is equal to that on the original-perturbed sample);
TN (true negative / unexplained and untransferred ability to fool) means the unexplained ability to fool the
source model; FP (false positive / explained and transferred inability to fool) means neither the original
nor transferred adversarial perturbations are able to fool the network; FN (false negative / unexplained
and untransferred inability to fool) means the transferred attack neither fools the model nor does it have a
prediction that corresponds to the original perturbed result. Since the measurement already accounts for the
transferability between models, a higher TFR indicates both better transferability and fooling ability. We
measured TFR scores across different DNN architectures and datasets; the results suggest that our proposed
UAD attack exhibits higher transferability than gradient-based UAPs.

Finally, singular value decomposition (SVD) was performed on the matrix of the loss function’s gradients
with respect to the input image samples on the TinyImageNet dataset, in order to compare the universality
of perturbation. These results are visualized in Figures 5, 6, 7, 8. We observed that the loss’s gradient matrix
GS(f) used for generating the UAD perturbations has always a unique top singular value across train and
test sets.
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Figure 4: Visualizations of UAD-PCA, UAD-grad, UAP-grad adversarial noise at ε = 0.1, 0.05, 0.02, 0.01 ·
E[‖X‖2]

UAD-PCA Fooling Rates

Dataset
Model

ResNet-18 ResNet-34 DenseNet-121 CaffeNet VGG-19 EfficientNet

CIFAR-10 (Train)

ε = 0.1 87.930 85.948 87.230 73.874 70.704 71.670
ε = 0.05 49.860 57.962 77.420 25.788 25.878 28.062
ε = 0.02 6.574 7.286 28.374 10.380 8.544 9.818
ε = 0.01 2.204 3.304 9.338 9.658 5.268 9.170

CIFAR-10 (Test)

ε = 0.1 88.350 85.380 86.940 74.010 71.180 69.410
ε = 0.05 51.110 57.500 77.700 24.050 24.720 23.240
ε = 0.02 6.480 8.560 30.340 4.130 8.070 2.910
ε = 0.01 2.080 2.380 10.520 1.350 1.960 1.180

CIFAR-100 (Train)

ε = 0.1 91.604 89.034 97.326 95.926 86.738 88.414
ε = 0.05 70.064 61.936 90.630 77.440 68.436 57.102
ε = 0.02 33.416 24.396 45.984 40.958 29.776 28.056
ε = 0.01 13.368 9.822 15.164 30.364 14.846 21.326

CIFAR-100 (Test)

ε = 0.1 91.910 89.330 97.540 95.300 86.980 84.840
ε = 0.05 72.130 65.050 91.740 73.990 71.090 49.000
ε = 0.02 40.010 31.130 52.460 30.550 34.970 14.800
ε = 0.01 18.650 13.040 23.730 11.070 12.620 2.980

TinyImageNet (Train)

ε = 0.1 98.101 98.358 98.096 98.368 99.023 98.390
ε = 0.05 83.353 82.876 79.080 80.425 93.549 88.526
ε = 0.02 62.006 64.609 59.091 70.242 71.471 69.781
ε = 0.01 56.095 53.904 48.460 66.078 67.022 62.069

TinyImageNet (Test)

ε = 0.1 98.160 98.550 98.260 98.100 99.400 97.380
ε = 0.05 77.360 77.660 74.160 60.410 91.950 76.700
ε = 0.02 40.120 48.740 41.280 31.160 42.780 33.790
ε = 0.01 25.920 20.110 19.910 13.680 19.640 9.580

Table 3: UAD-PCA fooling rates with ε = 0.1, 0.05, 0.02, 0.01 · E[‖X‖2].
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UAD-grad Fooling Rates

Dataset
Model

ResNet-18 ResNet-34 DenseNet-121 CaffeNet VGG-19 EfficientNet

CIFAR-10 (Train)

ε = 0.1 79.820 69.328 85.806 67.570 44.644 67.994
ε = 0.05 15.372 18.410 70.008 13.824 14.610 16.926
ε = 0.02 3.476 4.042 19.782 9.606 5.868 4.638
ε = 0.01 2.126 3.106 4.338 9.430 5.206 1.356

CIFAR-10 (Test)

ε = 0.1 80.790 69.760 85.820 64.880 46.830 67.940
ε = 0.05 17.990 20.050 71.240 10.530 14.700 17.950
ε = 0.02 4.900 4.470 21.560 2.490 3.390 5.220
ε = 0.01 1.870 2.150 4.440 1.220 1.430 1.630

CIFAR-100 (Train)

ε = 0.1 84.848 78.794 96.980 90.322 83.720 82.636
ε = 0.05 65.176 42.456 85.496 64.512 44.574 47.410
ε = 0.02 22.348 14.436 34.382 31.910 21.004 16.438
ε = 0.01 8.102 7.708 8.442 28.640 13.864 2.664

CIFAR-100 (Test)

ε = 0.1 86.080 78.640 97.070 88.380 84.970 83.040
ε = 0.05 67.960 47.440 86.980 59.810 49.160 48.640
ε = 0.02 29.640 20.750 42.230 16.190 24.160 19.740
ε = 0.01 10.110 9.330 16.070 4.360 9.470 3.560

TinyImageNet (Train)

ε = 0.1 95.510 95.261 94.634 96.780 97.775 98.279
ε = 0.05 73.192 75.848 72.553 80.195 90.642 85.269
ε = 0.02 57.211 57.009 54.092 66.979 71.367 43.215
ε = 0.01 53.432 53.343 47.967 65.229 66.845 16.424

TinyImageNet (Test)

ε = 0.1 95.020 94.700 93.870 95.030 97.980 98.530
ε = 0.05 62.350 65.990 64.280 60.300 87.700 84.070
ε = 0.02 30.910 31.000 33.870 21.480 42.840 42.570
ε = 0.01 18.200 17.920 19.150 8.360 17.120 16.880

Table 4: UAD-grad fooling rates with ε = 0.1, 0.05, 0.02, 0.01 · E[‖X‖2].

UAP Fooling Rates

Dataset
Model

ResNet-18 ResNet-34 DenseNet-121 CaffeNet VGG-19 EfficientNet

CIFAR-10 (Train)

ε = 0.1 56.288 66.018 80.908 30.546 29.944 56.814
ε = 0.05 10.394 10.916 66.486 11.812 11.230 5.188
ε = 0.02 3.018 3.960 7.104 9.660 5.366 1.446
ε = 0.01 2.180 3.102 3.692 9.500 5.072 0.662

CIFAR-10 (Test)

ε = 0.1 59.500 67.180 81.240 31.160 31.910 56.640
ε = 0.05 12.960 12.300 68.040 7.760 11.030 5.620
ε = 0.02 4.020 4.200 8.980 2.330 2.330 1.740
ε = 0.01 1.520 2.170 3.960 0.940 1.150 0.830

CIFAR-100 (Train)

ε = 0.1 81.466 66.408 80.606 82.538 62.346 68.112
ε = 0.05 49.262 31.618 67.475 59.060 37.532 29.208
ε = 0.02 11.462 10.974 22.131 29.412 15.318 4.476
ε = 0.01 7.134 7.208 19.724 28.376 13.364 1.938

CIFAR-100 (Test)

ε = 0.1 82.700 67.850 81.305 80.710 64.770 69.960
ε = 0.05 54.460 38.440 68.878 54.580 42.370 34.020
ε = 0.02 17.200 16.640 26.137 9.270 14.780 5.880
ε = 0.01 8.060 8.280 11.253 3.770 6.400 2.570

TinyImageNet (Train)

ε = 0.1 94.807 95.835 95.706 93.622 97.230 97.853
ε = 0.05 73.221 75.126 70.545 77.820 87.035 76.720
ε = 0.02 55.989 55.817 51.278 66.454 69.487 31.901
ε = 0.01 52.773 52.894 46.956 65.076 66.724 9.077

TinyImageNet (Test)

ε = 0.1 93.870 95.250 95.130 89.770 96.930 98.270
ε = 0.05 61.300 65.480 61.530 56.220 82.040 75.450
ε = 0.02 28.040 27.750 29.340 19.060 36.210 30.800
ε = 0.01 16.860 17.270 16.880 7.730 16.100 8.160

Table 5: Gradient-based UAP fooling rates with ε = 0.1, 0.05, 0.02, 0.01 · E[‖X‖2].
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Figure 5: Singular values of GS(f) on MNIST; top singular value is denoted with an arrow.

Figure 6: Singular values of GS(f) on TinyImageNet train and test sets; the top singular value is denoted
with an arrow.
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Figure 7: Singular values of GS(f) on CIFAR-10 train and test sets; the top singular value is denoted with
an arrow.

Figure 8: Singular values of GS(f) on CIFAR-100 train and test sets; the top singular value is denoted with
an arrow.
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UAD Cosine Similarities for CIFAR-10
Tar / Src R18 R34 D121 Caffe VGG Eff2s
R18 1.00 -0.70 0.54 -0.43 -0.36 -0.16
R34 -0.70 1.00 0.73 0.30 -0.50 -0.41
D121 0.54 0.73 1.00 0.31 -0.20 0.86
Caffe -0.43 0.30 0.31 1.00 -0.26 0.60
VGG -0.36 -0.50 -0.20 -0.26 1.00 -0.34
Eff2s -0.16 -0.41 0.86 0.60 -0.34 1.00

UAP Cosine Similarities for CIFAR-10
Tar / Src R18 R34 D121 Caffe VGG Eff2s
R18 1.00 -0.04 -0.00 -0.02 0.04 -0.06
R34 -0.04 1.00 0.03 0.01 -0.01 0.00
D121 -0.00 0.03 1.00 0.01 -0.00 0.03
Caffe -0.03 -0.01 -0.01 1.00 -0.03 -0.02
VGG 0.04 -0.01 -0.00 -0.03 1.00 0.06
Eff2s -0.06 0.00 0.03 -0.02 0.06 1.00

(a) Cosine similarity scores for UAD & UAP on CIFAR-10.

UAD TFR for CIFAR-10
Tar / Src R18 R34 D121 Caffe VGG Eff2s

R18 0.884 0.728 0.594 0.417 0.550 0.597
R34 0.772 0.854 0.532 0.406 0.503 0.456
D121 0.788 0.723 0.869 0.411 0.547 0.488
Caffe 0.324 0.320 0.267 0.740 0.447 0.344
VGG 0.295 0.403 0.145 0.241 0.712 0.394
Eff2s 0.321 0.341 0.294 0.231 0.280 0.694

UAP TFR for CIFAR-10
Tar / Src R18 R34 D121 Caffe VGG Eff2s

R18 0.595 0.610 0.378 0.298 0.305 0.465
R34 0.483 0.672 0.366 0.282 0.325 0.450
D121 0.481 0.549 0.812 0.333 0.316 0.441
Caffe 0.257 0.281 0.232 0.312 0.273 0.313
VGG 0.199 0.230 0.111 0.183 0.319 0.347
Eff2s 0.105 0.130 0.109 0.094 0.148 0.566

(b) Transferred fooling rates for UAD & UAP on CIFAR-
10.

Table 6: UAD and UAP cross-network transferability comparison.

UAD Cosine Similarities for CIFAR-100
Tar / Src R18 R34 D121 Caffe VGG Eff2s
R18 1.00 0.41 -0.53 -0.50 -0.49 -0.23
R34 0.41 1.00 0.38 -0.53 0.41 -0.23
D121 -0.53 0.38 1.00 -0.50 -0.47 -0.13
Caffe -0.50 -0.53 -0.50 1.00 0.39 -0.37
VGG -0.49 0.41 -0.47 0.39 1.00 -0.47
Eff2s -0.23 -0.23 -0.13 -0.37 -0.47 1.00

UAP Cosine Similarities for CIFAR-100
Tar / Src R18 R34 D121 Caffe VGG Eff2s
R18 1.00 0.02 -0.07 0.04 0.03 -0.07
R34 0.02 1.00 -0.01 -0.06 -0.02 0.02
D121 -0.07 -0.01 1.00 0.02 -0.03 -0.02
Caffe 0.04 -0.06 0.02 1.00 0.01 0.01
VGG 0.03 -0.02 -0.03 0.01 1.00 -0.05
Eff2s -0.07 0.02 -0.02 0.01 -0.05 1.00

(a) Cosine similarity scores for UAD & UAP on CIFAR-
100.

UAD TFR for CIFAR-100
Tar / Src R18 R34 D121 Caffe VGG Eff2s

R18 0.919 0.770 0.863 0.699 0.708 0.660
R34 0.767 0.893 0.783 0.598 0.732 0.578
D121 0.794 0.763 0.975 0.743 0.773 0.660
Caffe 0.632 0.564 0.688 0.953 0.617 0.547
VGG 0.673 0.642 0.747 0.746 0.870 0.608
Eff2s 0.561 0.520 0.612 0.678 0.693 0.848

UAP TFR for CIFAR-100
Tar / Src R18 R34 D121 Caffe VGG Eff2s

R18 0.827 0.724 0.869 0.726 0.688 0.594
R34 0.596 0.679 0.797 0.616 0.620 0.562
D121 0.886 0.713 0.813 0.755 0.653 0.566
Caffe 0.624 0.576 0.701 0.807 0.592 0.505
VGG 0.392 0.636 0.773 0.692 0.648 0.616
Eff2s 0.303 0.365 0.256 0.351 0.389 0.700

(b) Transferred fooling rates for UAD & UAP on CIFAR-
100.

Table 7: UAD and UAP cross-network transferability comparison.
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UAD Cosine Similarities for TinyImageNet
Tar / Src R18 R34 D121 Caffe VGG Eff2s
R18 1.00 0.59 0.27 0.29 -0.64 -0.52
R34 0.59 1.00 -0.65 -0.39 -0.54 0.58
D121 0.27 -0.65 1.00 0.34 -0.45 0.79
Caffe 0.29 -0.39 0.34 1.00 -0.37 -0.17
VGG -0.64 -0.54 -0.45 -0.37 1.00 -0.29
Eff2s -0.52 0.58 0.79 -0.17 -0.29 1.00

UAP Cosine Similarities for TinyImageNet
Tar / Src R18 R34 D121 Caffe VGG Eff2s
R18 1.00 0.02 -0.03 -0.04 0.02 0.05
R34 0.02 1.00 0.01 0.01 0.04 -0.01
D121 -0.03 0.01 1.00 -0.00 -0.02 0.01
Caffe -0.04 0.01 -0.00 1.00 -0.00 0.00
VGG 0.02 0.04 -0.02 -0.00 1.00 -0.03
Eff2s 0.05 -0.01 0.01 0.00 -0.03 1.00

(a) Cosine similarity scores for UAD & UAP on TinyIma-
geNet.

UAD TFR for TinyImageNet
Tar / Src R18 R34 D121 Caffe VGG Eff2s

R18 0.982 0.956 0.943 0.720 0.887 0.836
R34 0.938 0.986 0.945 0.668 0.878 0.826
D121 0.926 0.914 0.983 0.699 0.836 0.901
Caffe 0.695 0.743 0.760 0.981 0.787 0.883
VGG 0.874 0.886 0.826 0.723 0.994 0.853
Eff2s 0.866 0.915 0.912 0.874 0.877 0.974

UAP TFR for TinyImageNet
Tar / Src R18 R34 D121 Caffe VGG Eff2s

R18 0.939 0.925 0.932 0.726 0.901 0.853
R34 0.921 0.952 0.903 0.690 0.880 0.832
D121 0.892 0.908 0.951 0.703 0.852 0.768
Caffe 0.808 0.802 0.769 0.898 0.811 0.818
VGG 0.931 0.940 0.909 0.835 0.969 0.801
Eff2s 0.890 0.890 0.831 0.720 0.885 0.983

(b) Transferred fooling rates for UAD & UAP on TinyIm-
ageNet.

Table 8: UAD and UAP cross-network transferability comparison.
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