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ABSTRACT

Feature saliency maps are commonly used for interpreting neural network pre-
dictions. This approach to interpretability is often studied as a post-processing
problem independent of training setups, where the gradients of trained models are
used to explain their output predictions. However, in this work, we observe that
gradient-based interpretation methods are highly sensitive to the training set: mod-
els trained on disjoint datasets without regularization produce inconsistent inter-
pretations across test data. Our numerical observations pose the question of how
many training samples are required for accurate gradient-based interpretations. To
address this question, we study the generalization aspect of gradient-based expla-
nation schemes and show that the proper generalization of interpretations from
training samples to test data requires more training data than standard deep super-
vised learning problems. We prove generalization error bounds for widely-used
gradient-based interpretations, suggesting that the sample complexity of inter-
pretable deep learning is greater than that of standard deep learning. Our bounds
also indicate that Gaussian smoothing in the widely-used SmoothGrad method
plays the role of a regularization mechanism for reducing the generalization gap.
We evaluate our findings on various neural net architectures and datasets, to shed
light on how training data affect the generalization of interpretation methods.

1 INTRODUCTION

Multi-layer neural network (NN) models have achieved revolutionary success in computer vision
problems including image recognition (Krizhevsky et al., 2017), object detection (Zhao et al., 2019),
and medical image processing (Litjens et al., 2017). This success is primarily due to the enormous
capacity of NNs as well as their impressive generalization performance from training samples to
unseen data. In other words, not only do massive NNs perform almost perfectly in predicting the
label of training samples, but also they maintain their satisfactory training performance on test data
unobserved during the NN model’s training. The mysterious generalization success of deep learning
models has attracted a lot of attention in the machine learning community.

While NNs achieve great prediction performance over standard computer vision datasets, their de-
ployment in real-world applications such as self-driving cars and machine-based medical diagnostics
requires a reliable interpretation of their predictions. Such interpretation of these large-scale models
will help domain experts understand the basis of their predictions to further improve and robustify
the prediction model. Over the recent years, several algorithms have been developed to give such
an interpretation, including the widely-used gradient-based feature saliency maps such as the simple
gradient (Baehrens et al., 2010; Simonyan et al., 2013), integrated gradients (Sundararajan et al.,
2017), and SmoothGrad (Smilkov et al., 2017) methods. These gradient-based algorithms are based
on the first-order derivative of the NN model’s score function with respect to the input variables,
which reveal the features with a major impact on the model’s prediction.

While the gradient-based interpretation methods have found many applications in computer vision
problems, the theoretical understanding of the underlying factors contributing to their performance
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is still largely inadequate. Specifically, the generalization aspect of standard interpretation meth-
ods has not been studied in the literature, and it remains unclear how many training samples are
required to obtain an accurate estimation of the gradient-based explanation. Characterizing the sam-
ple complexity of learning generalizable saliency maps is an important step toward understanding
the fundamental limits of interpreting NN models and developing effective regularization schemes
for improving their performance.

In this paper, we focus on the generalization aspect of the deep learning-based interpretation meth-
ods, and through several theoretical and numerical results attempt to show that the proper general-
ization of a NN’s saliency map requires a larger training set than the standard classification problem
focusing only on the accuracy of the prediction model. In other words, the sample complexity of
finding an interpretable and accurate deep learning model is greater than that of training an only
accurate NN classifier.

To support the above statement on the generalization of interpretable deep learning, we prove theo-
retical bounds on the generalization rate of standard gradient-based saliency maps, including simple
and integrated gradients, from training samples to test data. Our generalization bounds indicate the
considerable discrepancy between the training and test performance scores of gradient-based inter-
pretation schemes. We compare the shown generalization error bounds with the standard bounds on
the generalization error of multi-layer NN classifiers, which suggests a higher statistical complex-
ity for the interpretation of neural nets than for the accuracy of a NN classifier as characterized by
Bartlett et al. (2017).

Subsequently, we focus on the SmoothGrad algorithm and show that the Gaussian smoothing in this
method can be interpreted as a regularization mechanism controlling the difference between test and
training interpretation performance. Our results indicate that the generalization error will decrease
linearly with the standard deviation of the SmoothGrad noise, which will reduce the variance of
the saliency map at the cost of a higher bias toward a constant interpretation. Therefore, this result
would parallel the well-known bias-variance trade-off for norm-based regularization methods in the
context of supervised learning.

Finally, we present the results of several numerical experiments demonstrating the effect of the
number of training data on the variance of the gradient-based saliency maps. Our empirical findings
reveal the significant impact of the size of the training set on the estimated saliency map for unseen
test data. We show that standard methods such as simple and integrated gradients are highly sus-
ceptible to the samples in the training set. In addition, our results show a lower correlation between
gradient-based interpretation maps of two NNs with disjoint training sets than the correlation be-
tween the NNs’ predicted labels, indicating that an interpretable NN model demands more training
data than an accurate NN classifier. Numerically, we show the regularization effect of the Smooth-
Grad algorithm which manages to properly control the variance of the saliency map on test data. Our
numerical results indicate the importance of proper generalization in the visual performance of in-
terpretation methods and support the SmoothGrad approach as a regularized interpretation scheme.
Here, we summarize our contributions:

• Highlighting the role of generalization in the performance of deep learning interpretations,

• Proving theoretical generalization bounds for standard gradient-based saliency maps,

• Demonstrating the regularization effect of Gaussian smoothing in SmoothGrad,

• Providing results on interpretations generalization and SmoothGrad regularization.

2 RELATED WORK

Standard generalization analysis in deep learning focuses on the consistency of neural nets’ predic-
tions across training and test samples. However, neural nets have been shown to memorize random
labels and Gaussian pixel inputs (Zhang et al., 2017); to easily overfit dataset biases and labeling
errors (Stock & Cisse, 2018; Beyer et al., 2020; Shankar et al., 2020), generating unexplainable pre-
dictions and exhibiting weak classification decision boundaries. To debug these faulty predictions,
several post-hoc interpretability (Lipton, 2016) methods attempt to explain the outputs via visu-
alizations, counterfactuals and numerical metrics. Unlike multi-modal concept learning methods,
such as TCAV (Kim et al., 2018), Concept Bottleneck Models (CBM) (Koh et al., 2020) and Inter-
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pretable Basis Decomposition (IBD) (Zhou et al., 2018), post-hoc methods study interpretations as
a stand-alone problem independent of the blackbox model training process and setup. In this work,
we choose a different approach by experimenting on gradient-based and feature-based methods, to
show that the train-to-test generalization of interpretations depends heavily on training set size.

Gradient-based Interpretations. Gradients of the model output with respect to its input is an in-
tuitive way of attributing the prediction to the data representation (Sundararajan et al., 2017). Early
attribution techniques generate explanations from the product between simple gradients and features
(Baehrens et al., 2010; Simonyan et al., 2013); works such as Guided BackProp (Springenberg et al.,
2014), DeConvNet (Zeiler & Fergus, 2014), DeepLift (Shrikumar et al., 2017) and Layer-wise Rele-
vance Propagation (LRP) (Binder et al., 2016) utilize discrete step backpropagation to proportionally
attribute class-wise prediction scores to network features. Sundararajan et al. (2017) further improve
the reliability of using gradients to weigh feature importance, by proposing integrated gradients to
satisfy desirable axioms of sensitivity and implementation invariance.

Gradients also characterise interpretability within and between trained models. Gradient signal-to-
noise ratio (GSNR) Liu et al. (2020) uses gradient alignment across different samples to understand
representation consistency of a model; Raghu et al. (2021) utilize the norm of network gradients to
quantify the amount of discrepancy between the input and prediction. The difference of gradients
between 2 networks taken with respect to the same input evaluates how much the networks’ predic-
tions disagree. In this work, we experiment on gradient-based feature attribution methods of simple
gradients and integrated gradients. We further calculate the norm and distance of networks’ gradient
interpretations to evaluate prediction consistency and agreement.

Parameter Space Interpretations. Beyond gradient-based analysis, the representation similarity of
samples between networks and network layers is also an important interpretation metric. Class Ac-
tivation Mapping (CAM) (Zhou et al., 2016) and the subsequent Grad-CAM (Selvaraju et al., 2017)
utilize inherent localization properties of deep NN features to visualize salient regions in images.
They project the target class’ weights from the output layer back to the convolutional feature maps,
using network parameter activations to score the importance of image features for classification. By
comparing the CAM interpretations of trained models, we qualitatively assess how consistently do
they attend to the same spatial regions. To directly compare between networks and across layers,
Centered Kernel Alignment (CKA) (Kornblith et al., 2019) improved upon canonical correlation
analysis methods (Raghu et al., 2017; Morcos et al., 2018), by calculating the similarity index be-
tween representational matrices. Their results generalize to different kernels, network architectures
and layer types, providing us with insight into the similarity between differently trained models,
across layers and samples.

Robustness and Consistency of Interpretations. Several related papers analyze the fragility and
consistency of the standard saliency maps. The related papers (Ghorbani et al., 2019; Dombrowski
et al., 2019; Heo et al., 2019; Subramanya et al., 2019) show that standard gradient-based inter-
pretations of neural nets commonly lack robustness to input perturbations, and the manipulated
interpretation can transfer across neural net architectures. Levine et al. (2019) present a certifiably
robust interpretation scheme by applying sparsification to the SmoothGrad approach. In another
related paper, Fel et al. (2022) analyze the consistency and algorithmic stability of standard interpre-
tation methods and measure the sensitivity of interpretation methods to the inclusion of one specific
sample in the training set. However, unlike our work, the mentioned works do not focus on the
generalization of interpretation methods from training to test data.

3 PRELIMINARIES

In this section, we discuss the notation and definitions used throughout the paper and shortly review
the gradient-based saliency maps analyzed in the paper.

3.1 NOTATION

In the paper, we use notation X ∈ R
d to denote the random feature vector and Y ∈ {1, . . . , k} to

denote the k-ary classification label. The deep learning algorithm trains a neural network fw ∈ F
where w represents the vector containing the weights of the neural net function and F = {fw : w ∈
W} denotes the feasible set of functions including the neural nets with allowed weight vectors in
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set W . Note that every fw : Rd → R
k maps the d-dimensional input to a k-dimensional prediction

vector including a real-valued entry for every label.

For training the neural net, we follow the standard empirical risk minimization (ERM) method min-
imizing the empirical expected loss, measured with loss function ℓ(ŷ, y) between actual y and pre-
dicted ŷ labels, over the training set {(xi, yi)

n
i=1} consisting of n labeled training examples drawn

independently from an underlying distribution PX,Y :

min
w∈W

1

n

n∑

i=1

ℓ
(
fw(xi), yi

)
. (1)

We note that the standard generalization analysis in machine learning focuses on the difference
between the expected loss values on the training samples and the test samples drawn from the un-
derlying model PX,Y .

3.2 GRADIENT-BASED SALIENCY MAPS

In our generalization analysis, we consider standard gradient-based saliency maps as a neural net’s
interpretation. To define standard saliency maps, we use fc(x) to denote the real-valued output of
the c-th neuron at the final layer of neural net f . Assuming that c is the assigned label to input x, i.e.
the final layer’s neuron with the maximum value, we review the definitions of the following standard
saliency maps:

1. Simple Gradient Method: As defined by Simonyan et al. (2013), the simple gradient is the
gradient of the neural net’s output at the predicted neuron with respect to the input feature vector:

Simple-Grad(fc,x) := ∇xfc(x). (2)

2. Integrated Gradients: Given a reference vector x0, the integrated gradients (Sundararajan et al.,
2017) calculate the gradient’s integral over the line segment connecting the reference point x0

and a target point x. In practice, the integrated gradient is approximated using m intermediate
points between x

0 and x:

Int-Grad(fc,x) :=

∫ 1

0

∇xfc

(
x
0 + α∆x

)
⊙∆x dα ≈ ∆x

m
⊙

m∑

i=1

∇xfc

(
x
0 +

i

m
∆x
)
. (3)

In the above, ∆x = x − x
0 denotes the difference between the reference and target points, and

⊙ denotes the vector element-wise product.

3. SmoothGrad: The SmoothGrad approach (Smilkov et al., 2017) applies Gaussian smoothing to
the gradient-based interpretation, and calculates the average gradient with an isotropic Gaussian
distribution centered at the target data point x. Specifically, we define Gaussian vector Z ∼
N (0, σ2I) and define SmoothGrad as

Smooth-Grad(fc,x) := EZ∼N (0,σ2I)

[
∇fc(x+ Z)

]
≈ 1

m

m∑

i=1

∇fc(x+ zi), (4)

where z1, . . . , zm ∼ N (0, σ2I) are independent observations of the Gaussian noise used to
approximate the SmoothGrad expectation.

4 GENERALIZATION IN INTERPRETATION TASKS

Generalization from training examples to test data is a crucial factor behind the success of every
learning algorithm. In the case of interpretation methods, we note that the trained neural net fw ∈ F
is learned using the training data, and hence the learned function will be different from the optimal
neural net minimizing the expected loss over the underlying distribution of test data PX,Y . In our
discussion, we use f∗ to denote the optimal neural net classifier in F in terms of the achieved
performance on test data, i.e.

f∗ := argmin
f∈F

E(X,Y )∼P

[
ℓ
(
f(X), Y

) ]
. (5)
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While we, as the learner, do not know the underlying distribution PX,Y and therefore the optimal
f∗, we can still define the loss of an interpretation scheme I(·) at an input x as the norm difference
between I’s output for a given classifier f and the optimal f∗, that is

LossI(f,x) :=
∥∥I(f,x)− I(f∗,x)

∥∥
2
, (6)

where ∥ ·∥2 denotes the L2-norm of an input vector. Here we define the interpretation vector I(f,x)
when we choose class c = y for the actual label y of sample x. Also, note that the above definition
uses I(f∗,x) as the underlying interpretation which the learner aims to estimate from training data.

Definition 1. For a classifier function f and training set {(xi, yi)
n
i=1}, we define the interpretation

training loss L̂(f) as the expected interpretation loss on training data:

L̂(f) :=
1

n

n∑

i=1

LossI(f,xi).

Also, we define the interpretation test loss L(f) as the expected interpretation loss on the underlying
distribution of test data PX:

L(f) := EX∼PX

[
LossI(f,X)

]
.

Finally, we define the interpretation generalization error as the difference between the interpretation
training and test loss values:

ϵgen(f) := L(f)− L̂(f).

Based on the above definition, a necessary condition for a reliable interpretation of a neural net-
work’s prediction is a small interpretation generalization error. This condition is required, because
if the generalization error is relatively large, then the accuracy of the interpretation scheme will be
significantly worse on test data than on the training samples. Note that while the generalization
condition is necessary for a proper interpretation result on test samples, it is still not sufficient for a
satisfactory interpretation performance, since it also requires a good performance on training data.
In the next section, we present theoretical bounds on the interpretation generalization error of neu-
ral network classifiers, to compare the generalization rates across standard and interpretable deep
learning problems.

5 THEORETICAL BOUNDS ON INTERPRETATION GENERALIZATION ERROR

In this section, we theoretically analyze the interpretation generalization error of neural networks.
Here we suppose that the neural net function fw : Rd → R

k has the following format:

fw(x) = WLϕL−1

(
WL−1ϕL−2(· · ·W2ϕ1(W1x))·

)
. (7)

Here the vector w concatenates the entries of the L layers’ weight matrices W1, . . . ,WL. Also,
ϕi : R → R represents the activation function at layer i.

Our first theorem concerns the interpretation generalization performance of the simple gradient and
integrated gradients. This result demonstrates that the generalization of these gradient-based inter-
pretation schemes could require a larger training set than the standard deep learning classification
problem. Specifically, this theorem extends the generalization analysis in Bartlett et al. (2017) to
the gradient-based interpretation of neural networks. In the following, we use ∥ · ∥2 to denote a
matrix’s spectral norm, i.e. its largest singular value, and also ∥ · ∥2,1 denotes the L2,1-group norm
of a matrix, i.e. the summation of the L2-norms of the matrix’s rows.

Theorem 1. Suppose that the neural net classifier in equation 7 has an γi-Lipschitz and γi-smooth
activation function satisfying ∀z ∈ R : max{|ϕ′

i(z)|, |ϕ′′
i (z)|} ≤ γi. We assume that the interpre-

tation loss is upper-bounded by constant c and the training data matrix Xn×d is norm-bounded as
∥X∥2 ≤ B with probability 1. Also, we use D to denote the maximum number of rows and columns
in fw’s weight matrices. Then, for every ω > 0, with probability at least 1 − ω the following gen-
eralization error bound will hold for both the simple gradient method and integrated gradients of
every fw:

ϵgen(fw) ≤ O
(
c

√
log(1/ω)

n
+
BRw log(n) log(D)

n

)
.
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(a) Interpretation generalization loss
vs. spectral norm factor.

(b) CIFAR-10 interpretation-classification correlation
scores.

Figure 1: We find that networks with pre-training and spectrally-normalized networks using smaller
(stricter) norm factors exhibit lower interpretation generalization loss.

Here Rw :=
(∑L

i=1

∏i
j=1 γj∥Wj∥2

)(∏L
i=1 γi∥Wi∥2

)
×
(∑L

i=1

∥Wi∥2/3
2,1

∥Wi∥2/3
2

)3/2
denotes the inter-

pretation capacity of the neural net.

Proof. We present the proof in the Appendix.

Comparing the generalization bound for the simple and integrated gradients interpretation to the
generalization bound in Bartlett et al. (2017) for the standard supervised learning task, we notice an

order-wise O
(∑L

i=1

∏i
j=1 γj∥Wj∥2

)
greater generalization error for gradient-based interpretation

schemes. This additional term indicates the extra cost of generalization for the simple and inte-
grated gradients-based interpretable deep learning. Next, we state the generalization bound for the
SmoothGrad approach.

Theorem 2. Suppose that the neural net classifier in equation 7 has an γi-Lipschitz activation
function satisfying ∀z ∈ R : |ϕ′

i(z)| ≤ γi. We assume that the interpretation loss is upper-bounded
by constant c and the training data matrix Xn×d is norm-bounded as ∥X∥2 ≤ B with probability
1. Then, for every ω > 0, with probability at least 1 − ω the following generalization error bound
will hold for the SmoothGrad interpretation of every fw with standard deviation σ > 0:

ϵgen(fw) ≤ O
(
c

√
log(1/ω)

n
+
BLw log(n) log(D)

√
d

nσ

)
,

where Lw :=
∏L

i=1 γi∥Wi∥2
(∑L

i=1

∥Wi∥2/3
2,1

∥Wi∥2/3
2

)3/2
denotes the spectral capacity of the neural net.

Proof. We present the proof in the Appendix.

Note that Theorem 2’s bound is only by a multiplicative factor
√
d

σ different from the generalization
bound in the standard deep supervised learning problem (Bartlett et al., 2017). Therefore, the theo-
rem suggests that Gaussian smoothing can be interpreted as a regularization of the simple gradient
approach to improve its generalization behavior. The SmoothGrad interpretation algorithm could
gain a better generalization performance by increasing the standard deviation, while the training
performance could drop because of the additional noise.

6 NUMERICAL EXPERIMENTS

6.1 EXPERIMENTAL DETAILS

Datasets. We numerically study the generalization and visual consistency of interpretation methods
on the standard CIFAR-10 (Krizhevsky et al., 2009) and the larger scale TinyImageNet (Le & Yang,
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Table 1: Rank correlation coefficient and saliency pixel intersection on the test set, for the interpre-
tations of neural nets trained with a training set split factor of sf = 2, 4, 8, 16.

ResNet-18/50 ViT-B-16 MLP-Mixer

sf Rank C ↑ Px % ↑ Rank C ↑ Px % ↑ Rank C ↑ Px % ↑

CIFAR-10

2 .37 ± .02 28.0 ± 0.9 .31 ± .02 23.7 ± 1.6 .39 ± .01 34.1 ± 1.3
4 .33 ± .01 26.8 ± 1.0 .25 ± .02 18.4 ± 1.5 .38 ± .01 33.6 ± 1.0
8 .31 ± .01 25.3 ± 0.7 .25 ± .02 17.7 ± 1.3 .36 ± .01 32.7 ± 0.9
16 .28 ± .01 23.8 ± 0.5 .23 ± .02 15.4 ± 1.4 .34 ± .01 28.4 ± 0.9

Caltech-
256

2 .31 ± .01 3.3 ± 0.1 .21 ± .05 3.8 ± 1.4 .31 ± .01 4.3 ± 0.3
4 .30 ± .02 2.2 ± 0.3 .18 ± .05 1.7 ± 0.5 .21 ± .05 1.5 ± 0.4
8 .27 ± .04 1.7 ± 0.6 .17 ± .02 0.7 ± 0.6 .18 ± .03 1.2 ± 0.7
16 .24 ± .03 0.1 ± 0.4 .15 ± .03 0.5 ± 0.6 .14 ± .02 0.9 ± 0.7

Tiny-

ImageNet

2 .12 ± .02 23.8 ± 0.9 .11 ± .01 20.3 ± 0.2 .11 ± .01 26.3 ± 0.3
4 .10 ± .03 23.7 ± 0.5 .10 ± .01 20.1 ± 1.1 .06 ± .03 22.4 ± 0.4
8 .06 ± .03 21.4 ± 0.5 .05 ± .02 18.8 ± 1.0 .03 ± .02 18.4 ± 1.0
16 .03 ± .03 20.0 ± 0.8 .05 ± .01 18.3 ± 0.5 .03 ± .01 18.3 ± 0.9

2015) and Caltech-256 (Griffin et al., 2022) datasets. TinyImageNet dataset is a downsampled subset
of ImageNet (Deng et al., 2009) and comprises 200 object categories with 500 training images and
50 validation images for each class. Caltech-256 contains 256 object categories totaling 30,607
high-resolution images. We note that since our experiments would require us to train from scratch a
multitude networks on different subset levels for each dataset, it was infeasible to directly experiment
on the large-scale ImageNet (Deng et al., 2009) dataset. Instead, to validate the message that the
generalization of interpretations requires more data, we utilize the large-scale ImageNet dataset for
pre-training via off-the-shelf weights.

Neural network architectures. To validate our hypotheses, we experiment on a diverse set of
computer vision network architectures. We report our numerical results for the following convo-
lutional neural networks: ConvNeXt-Tiny (Liu et al., 2022), EfficientNet-V2-S (Tan & Le, 2021),
ResNet (He et al., 2016) (we trained ResNet-50 on Caltech-256 and trained ResNet-18 on Tiny-
ImageNet, CIFAR-10); for the ViT-B-16 Vision Transformer model proposed by Dosovitskiy et al.
(2021); Beyer et al. (2022); and for the multi-layer perceptron model of MLP-Mixer (Tolstikhin
et al., 2021).

Experiment design. To evaluate the effect of training set size on interpretation general-
ization, we consider split factors of sf = 2, 4, 8, 16, each corresponding to training with
50%, 25%, 12.5%, 6.25% of available training data. We train a neural net for every data subset
for 200 epochs. To further improve the interpretation generalization, we allow models to train on
“more data” by using pre-trained ImageNet weights, then fine-tuning for 50 epochs.

6.2 VERIFYING THE GENERALIZATION GAP

In Figure 1b, we show that network interpretation performance suffer more than network classi-
fication performance, under the effect of training set scale and overlap. On test set data, we plot
the normalized Spearman correlation of network interpretations against softmax predictions. As sf
increases from 2 to 16 and models are trained with smaller, more disjoint training sets, the rank
correlation of test set interpretations drop more acutely than that of network predictions. Results of
other datasets are in the Appendix.

Furthermore, we visualize the interpretation generalization gap in Fig. 2, by varying the number
of training samples from 6.25% of the training set, to pre-training on ImageNet and fine-tuning on
50% of the train set. As the number of training samples increased, GradCAM (Selvaraju et al., 2017)
interpretations became more similar between pairs of models, as seen from how “Pretrain” model
pairs have near-perfect saliency map agreement across datasets. For models that are optimized with
more training samples, this localization ability transfers successfully to unseen test data, verifying
that more training samples are required for interpretations to agree across models and generalize
across train and test sets.
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Figure 2: Grad-CAM comparisons with ConvNeXt-Tiny. As we increase the number of training
samples from 6.25% (sf = 16) of the training set, to using 50% of the training set, then to pre-
training on ImageNet plus fine-tuning with 50% training data, we observe that model pairs generate
increasingly consistent interpretations.

6.3 GRADIENT-BASED INTERPRETATIONS

In Figure 3, through qualitative experiments on Caltech-256 (Griffin et al., 2022) with the simple
gradient (Simonyan et al., 2013), SmoothGrad (Smilkov et al., 2017), integrated gradients (Sun-
dararajan et al., 2017) and DeepLift (Shrikumar et al., 2017), we show that “Pretrain” models out-
perform 6.25% models in terms of visual fidelity, localization meaningfulness and generalization
ability to test samples.

We present further numerical evidence by assessing the generalization gap in integrated gradients
(Sundararajan et al., 2017). We vary the dataset split factor from 2 ( 12 of train set), 4, 8 to 16

( 1
16 of the train set) and generated mass-centered perturbations with the attacker network for the

source network. The intuition behind this technique is that if the networks have similar gradient
interpretations, then the perturbations generated by the attacker would have negligible effect on
the source networks’ saliency map outputs. In Table 1, we compare the a) rank correlation of
saliency maps, the Spearman rank correlation coefficient between the saliency maps of the original
and perturbed images; b) top-100 salient pixel intersection %, indicating the percentage of overlap
between the top-100 most salient pixels, which are used for classifying the original and perturbed
images. Our comparison shows a consistent improvement of the discussed metrics by increasing the
training set size.

6.4 IMPROVING GENERALIZATION VIA SPECTRAL NORMALIZATION AND SMOOTHGRAD

Motivated by our theoretical results in Theorem 1, which suggest the application of spectral nor-
malization in closing the interpretation generalization gap, we numerically validate this in Figure 1a.
By plotting the interpretation generalization loss against the spectral norm factor of spectrally-
normalized neural nets, we verify that a lower (stricter) normalization factor leads to lower gen-
eralization loss; this demonstrates the practical implication of Theorem 1.

To further improve generalization performance, we emphasize Theorem 2, which reveals the regu-
larization effect of Gaussian smoothing in SmoothGrad to decrease the generalization gap. This is
a non-trivial result explaining why SmoothGrad substantially improves SimpleGrad and Integrated-
gradients; we conduct experiments comparing these methods. Our goals are to first quantify the
within-model discrepancy (mis-attribution) between the input and output and second to evaluate how
the cross-network gradient-based interpretations increasingly disagree with fewer training samples.
We subsequently compute the mean L2-norm difference of the interpretation vectors for networks
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Figure 3: Different gradient-based interpretation methods tested on Caltech-256. We compare the
fidelity, localization meaningfulness and train-test generalization abilities of interpretations, for Pre-
train and the 6.25% settings. The generalization and performance gaps widen for interpretations
generated by models trained on smaller, disjoint training sets. Full results are in the Appendix.

with disjoint training sets of the same size. A larger norm difference indicates a greater discrepancy
between the interpretations and worse generalization.

We report results averaging over m = 1, 5, 20, 50 Gaussian noise vectors for the estimation of
the SmoothGrad interpretation, with Gaussian perturbation standard deviation σ chosen from the
set {0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0}. We observe that increasing the number of randomly-perturbed
samples with Gaussian noise has a gradient smoothing effect. Also, as visualized in Appendix
Figures 8-15, increasing the noise standard deviation improves Gaussian smoothing power, with
effects of increasing the interpretation agreement and reducing the generalization gap. Comparing
the simple gradient (marked by “no σ” in the legends) and SmoothGrad methods’ results, we observe
that the Gaussian smoothing in SmoothGrad improves cross-network interpretation agreement and
hence the generalization of the gradient-based saliency map. This observation is consistent with our
theoretical analysis, evidencing the regularization role of Gaussian smoothing in SmoothGrad.

7 CONCLUSION

In this paper, we highlight the role of proper generalization from training samples to unseen test
data in the success of deep learning-based interpretation methods. On the theory side, we prove gen-
eralization error bounds to show the higher sample complexity of learning interpretable neural net
classifiers, and further discuss the regularization effect of Gaussian smoothing in the SmoothGrad
approach. On the empirical side, our numerical results also demonstrate the influence of the training
set size on the generalization of gradient-based interpretation methods to test samples. To further
expand the analysis, an interesting future direction is to explore other regularization schemes and
their effect on the generalization of interpretation methods. Such a study can be performed for pop-
ular deep learning regularization schemes such as batch normalization and dropout. Furthermore,
the extensions of our generalization study to mask-based and perturbation-based explanation tools
could improve the understanding of the effect of adversarial schemes on the generalization proper-
ties of the interpretability of neural networks. We note that our developed generalization framework
is relatively general and potentially applicable for studying the discussed future directions.
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Lucas Beyer, Olivier J Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and Aäron van den Oord. Are
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Thomas Fel, David Vigouroux, Rémi Cadène, and Thomas Serre. How good is your explanation?
algorithmic stability measures to assess the quality of explanations for deep neural networks. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),
pp. 720–730, January 2022.

Amirata Ghorbani, Abubakar Abid, and James Zou. Interpretation of neural networks is fragile.
AAAI, 33(01):3681–3688, Jul. 2019. doi: 10.1609/aaai.v33i01.33013681. URL https://ojs.
aaai.org/index.php/AAAI/article/view/4252.

Griffin, Holub, and Perona. Caltech 256, Apr 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Juyeon Heo, Sunghwan Joo, and Taesup Moon. Fooling neural network interpretations via adver-
sarial model manipulation. Advances in Neural Information Processing Systems, 32, 2019.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al.
Interpretability beyond feature attribution: Quantitative testing with concept activation vectors
(tcav). In International Conference on Machine Learning, pp. 2668–2677. Proceedings of Ma-
chine Learning Research, 2018.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
Percy Liang. Concept bottleneck models. In Hal Daumé III and Aarti Singh (eds.), International
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A PROOFS

A.1 PROOF OF THEOREM 1

We begin by proving the following lemmas.

Lemma 1. Under Theorem 1’s assumptions, the neural network score function’s gradient ∇xfw,c

satisfies the following perturbation error bound when the weight matrix Wk is perturbed by a
norm-bounded matrix ∆k for which ∥∆k∥2 ≤ t, where we define w̃ = vec(W1, . . . ,Wk−1,Wk +
∆k,Wk+1, . . . ,WL),

∥∥∇xfw,c(x)−∇xfw̃,c(x)
∥∥

≤
Lw

∑L
i=k

∏i
j=1 γj∥Wj∥

∥Wk∥2
∥∆k∥2

Proof. The neural net’s gradient with respect to input x is as follows:

∇xfw,c(x) = w
⊤
L,c

L−1∏

i=1

W⊤
i diag

(
ϕ′
i(hw1:i

(x))
)
.

Here, fw1:i
(x) is the neural net’s output at layer i. As a result, since w̃ is different from w only at

layer k we obtain:
∥∥∇xfw,c(x)−∇xfw̃,c(x)

∥∥
2

≤
L∑

i=k

[( L∏

j=1

γj∥Wj∥2
)( i∏

j=1

γj∥Wj∥2
)] ∥∆k∥2

∥Wk∥2

=

( L∏

j=1

γj∥Wj∥2
) L∑

i=k

[ i∏

j=1

γj∥Wj∥2
] ∥∆k∥2
∥Wk∥2

=
Lw

∑L
i=k

∏i
j=1 γj∥Wj∥

∥Wk∥2
∥∆k∥2.

The proof is therefore complete.

Lemma 2. Under Theorem 1’s assumptions, the neural network’s integrated gradients
Int-Grad(fw,c,x) satisfies the following perturbations error bound when the weight matrix Wk

is perturbed by a norm-bounded matrix ∆k such that ∥∆k∥2 ≤ t, where we define w̃ =
vec(W1, . . . ,Wk−1,Wk +∆k,Wk+1, . . . ,WL):

∥∥Int-Grad(fw,c,x)− Int-Grad(fw̃,c,x)
∥∥

≤
∥x− x

0∥∞Lw

∑L
i=k

∏i
j=1 γj∥Wj∥

∥Wk∥2
∥∆k∥2

Proof. Note that according to the definition, we have:

Int-Grad(fc,x) :=

∫ 1

0

∇xfc

(
x
0 + α∆x

)
⊙∆x dα

As shown in Lemma 1, the weight perturbation will lead to a bounded change to the gradient at
every x

′

∥∥∇xfw,c(x
′)−∇xfw̃,c(x

′)
∥∥

≤
Lw

∑L
i=k

∏i
j=1 γj∥Wj∥

∥Wk∥2
∥∆k∥2.
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Therefore, we will have:

∥∥∇xfw,c(x
′)⊙ (x− x

0)−∇xfw̃,c(x
′)⊙ (x− x

0)
∥∥

=
∥∥(∇xfw,c(x

′)−∇xfw̃,c(x
′)
)
⊙ (x− x

0)
∥∥

≤
∥x− x

0∥∞Lw

∑L
i=k

∏i
j=1 γj∥Wj∥

∥Wk∥2
∥∆k∥2

where the last line follows the inequality ∥a ⊙ b∥2 ≤ ∥a∥2∥b∥∞. The lemma’s proof is thus
complete.

To prove Theorem 1 in the case of the simple gradient approach, we use a similar covering-number-
based approach to Bartlett et al. (2017)’s analysis for standard classification deep learning problems.
Therefore, we suppose the norm constraints ∥Wi∥2 ≤ ai, ∥Wi∥2,1 ≤ bi for each i = 1, . . . , L.
Next, we use the following covering resolution parameters:

ϵk =
akαkϵ

(
∏L

i=1 γiai)
(∑L

i=k

∏i
j=1 γjaj)

,

where αk =
1

A

bk
2/3

ak2/3
, A =

L∑

i=1

bi
2/3

ai2/3

Note that Lemma 1 implies that by finding an ϵk-covering for each Wk, the covering resolution for
[∇xfw(x)]|S (S is the training set) will be upper-bounded by

L∑

k=1

[
Lw

∑L
i=k

∏i
j=1 γj∥Wj∥

∥Wk∥2
ϵk

]
= ϵ.

Hence, using Lemma A.7 from Bartlett et al. (2017) will result in the following bound on the ϵ-
covering-number for the set [∇xFW − ∇xf

∗]|S = {∇xfw,c(X) − ∇xf
∗
c(X)(X) : ∀1 ≤ i ≤ L :

∥Wi∥2 ≤ ai, ∥Wi∥2,1 ≤ bi}
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logN
(
[∇xFW −∇xf

∗]|S , ∥ · ∥2, ϵ
)

≤
L∑

i=1

sup
w

−i∈W

[
logN

(
∇(fw,c(X) − f∗

c(X))(X) :

∥Wi∥2 ≤ ai, ∥Wi∥2,1 ≤ bi
}
, ∥ · ∥2, ϵi

)]

≤
L∑

i=1

sup
w

−i∈W

[
logN

(
∇(fw,c(X) − f∗

c(X))(X) :

∥Wi∥2,1 ≤ bi
}
, ∥ · ∥2, ϵi

)]

≤
L∑

i=1

[
sup

w
−i∈W

bi
2∥∇(fw,c(X) − f∗

c(X))(X)∥22
ϵi2

log(2W 2)

]

≤
L∑

i=1

[
sup

w
−i∈W

L2
w
B2 log(2W 2)

ϵ2
bi

2

ϵi2
]

≤ log(2W 2)B2
∏L

i=1 γ
2
i ai

2

ϵ2

×
L∑

k=1

[bk2(
∑L

i=k

∏i
j=1 γjaj)

2

αk
2a2k

]

≤
log(2W 2)B2

∏L
i=0 γ

2
i ai

2(
∑L

i=1

∏i
j=1 γiai)

2

ϵ2

×
L∑

k=0

[ bk
2

αk
2a2k

]

≤
4 log(2W 2)B2

∏L
i=1 γ

2
i ai

2
(∑L

i=1

∏i
j=1 γjaj

)2

ϵ2

×
L∑

i=1

[ bi
2

αi
2a12i

]

=
C

ϵ2

where C is defined as

C = 4 log(2W 2)B2

[ L∏

i=1

γ2
i ai

2
( L∑

i=1

i∏

j=1

γjaj
)2
[

L∑

i=1

bi
2/3

ai2/3

]3]
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Using the above covering-number bound, we apply the Dudley entropy integral bound (Bartlett et al.,
2017) which bounds the Rademacher complexity of [∥∇F −∇f∗∥2]|S as

R([∥∇F −∇f∗∥2]|S)

≤ inf
α≥0

{
4α√
n

+
12

n

∫ √
n

α

√
logN

(
∥∇F(X)−∇f∗(X)∥2, ϵ

)
dϵ

}

≤ inf
α≥0

{
4α√
n
+

12
√
C

n
log(

√
n

α
)

}

≤ 4

n3/2
+

18 log(n)
√
C

n

≤ 4

n3/2
+

[
18 log(n)

n
×

4 log(2W 2)B




L∏

i=1

γiai
( L∑

i=1

i∏

j=1

γjaj
)
[

L∑

i=1

bi
2/3

ai2/3

]3/2


Here, the last two inequalities come from choosing α = 1/n. Therefore, we have the following
bound where RW = sup

w∈W Rw as defined in Theorem 1:

R([∥∇F −∇f∗∥2]|S)

≤O
(
BLwRW log(n) log(D)

n

( L∑

i=1

∥Wi∥2/32,1

∥Wi∥2/32

)3/2
)

Therefore, according to the well-known Rademacher complexity-based generalization analysis (?),
for every ω > 0 with probability at least 1− ω we have for every w ∈ W:

1

n

n∑

i=1

[∥SG(fw,c,xi)− SG(f∗
c ,xi)∥2]

−EX∼PX
[∥SG(fw,c, X)− SG(f∗

c , X)∥2]

≤O
(
c

√
log(1/ω)

n

+
BLwRW log(n) log(D)

n

( L∑

i=1

∥Wi∥2/32,1

∥Wi∥2/32

)3/2
)
,

which is the same as

ϵgen(fw) ≤ O
(
c

√
log(1/ω)

n

+
BLwRW log(n) log(D)

n

( L∑

i=1

∥Wi∥2/32,1

∥Wi∥2/32

)3/2
)
.

Therefore the proof is complete for the SimpleGrad interpretation.

In order to prove Theorem 1 for the Integrated Gradients case, we can follow the same steps we used
for the SimpleGrad case with the difference that as shown in Lemma 2 the perturbation bound for
the Integrated Gradients case is by a multiplicative factor ∥x− x

0∥∞ larger than the case of simple
gradients. In addition, the supremum of the ℓ2-operator-norm difference of ∥Int-Grad(fw,c,X) −
Int-Grad(f∗

c ,X)∥2 is also by the same multiplicative factor ∥x−x
0∥∞ larger than the case of simple

gradients. Therefore, assuming that ∥x−x
0∥∞ ≤ E holds with probability 1 for constant E, we can

follow the same steps of the proof for the simple gradient to show the following for the integrated
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Gradients:

ϵgen(fw) ≤ O
(
c

√
log(1/ω)

n

+
BLwRWE2 log(n) log(D)

n

( L∑

i=1

∥Wi∥2/32,1

∥Wi∥2/32

)3/2
)
.

The proof is therefore complete.

A.1.1 PROOF OF THEOREM 2

We begin by proving the following Lemma.

Lemma 3. Under Theorem 2’s assumptions, the neural network’s smooth gradient
SmoothGrad(fw,c,x) satisfies the following perturbation error bound when the weight ma-
trix Wk is perturbed by a norm-bounded matrix ∆k such that ∥∆k∥2 ≤ t, where we define
w̃ = vec(W1, . . . ,Wk−1,Wk +∆k,Wk+1, . . . ,WL):

∥∥SmoothGrad(fw,c,x)− SmoothGrad(fw,c,x)
∥∥
2

≤O

(
max

{B
√
d

σ
, d
} Lw

σ∥Wk∥2
∥∆k∥2

)

Proof. To prove this result, we apply Stein’s lemma (Lemma 1 in the main text) which shows that

SmoothGrad(fw,c,x) = EZ∼N (0,σ2I)

[ Z
σ2

fw,c(x+ Z)
]
.

Therefore, we have:
∥∥SmoothGrad(fw,c,X)− SmoothGrad(fw,c,X)

∥∥
2

=:

∥∥∥∥E
[ Z
σ2

(fw,c,X+ Z)− (fw,c,X+ Z)
]∥∥∥∥

2

≤:E

[∥∥ Z

σ2

∥∥
2

∣∣fw,c,X+ Z)− (fw,c,X+ Z)
∣∣
]

≤ E

[
Lw∥X+ Z∥2

∥Wk∥2
∥∆k∥2

∥Z∥2
σ2

]

≤ Lw∥∆k∥2
∥Wk∥2

E
[
(∥X∥2 + ∥Z∥2)

∥Z∥2
σ2

]

≤ Lw∥∆k∥2
∥Wk∥2

O

(
max

{B
√
d

σ
, d
}
)

The last inequality follows from the well-known facts (?) that E[∥Z∥2] ≤ cσ
√
d holds for a uni-

versal constant c and a random matrix distribution with independent Gaussian entries distributed as
N (0, σ2), and also E[∥Z∥22] ≤ dσ2 as ∥Z∥22 is the maximum eigenvalue of both Z

⊤
Z and ZZ

⊤.
Hence, the lemma’s proof is complete.

To prove Theorem 2, we again apply a similar covering-number-based approach to Bartlett et al.
(2017)’s analysis. Therefore, we suppose the norm constraints ∥Wi∥2 ≤ ai, ∥Wi∥2,1 ≤ bi for each
i = 1, . . . , L. Next, we use the following covering resolution parameters:

ϵk =
akαkϵ

(
∏k

i=1 γiai)cmax{B
√
d

σ , d}
,

where αk =
1

A

bk
2/3

ak2/3
, A =

L∑

i=1

bi
2/3

ai2/3
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In the above c is the constant that is required for the order-wise bound of Lemma 3 to hold with
equality. Note that Lemma 3 shows that if we have an ϵk-covering for each Wk, the covering
resolution for ∥SmoothGrad(fw,X)−SmoothGrad(f∗,X)∥2|S (S is the training set) will be upper-
bounded by

L∑

k=1

[
c(
∏k

i=1 γiai)max{B
√
d

σ , d}
∥Wk∥2

ϵk

]
= ϵ.

Hence, using Lemma A.7 from Bartlett et al. (2017) will result in the following bound on the ϵ-
covering-number for the set ∥SmoothGrad(fw,X) − SmoothGrad(f∗,X)∥2|S : ∀1 ≤ i ≤ L :
∥Wi∥2 ≤ ai, ∥Wi∥2,1 ≤ bi}

logN
(
∥SmoothGrad(fw,X)

− SmoothGrad(f∗,X)∥2|S , ∥ · ∥2, ϵ
)

≤
L∑

i=1

sup
w

−i∈W

[
logN

(
SmoothGrad(fw,c(X) − f∗

c(X))(X) :

∥Wi∥2 ≤ ai, ∥Wi∥2,1 ≤ bi
}
, ∥ · ∥2, ϵi

)]

≤
L∑

i=1

sup
w

−i∈W

[
logN

(
SmoothGrad(fw,c(X) − f∗

c(X))(X) :

∥Wi∥2,1 ≤ bi
}
, ∥ · ∥2, ϵi

)]

≤
L∑

i=1

[
sup

w
−i∈W

bi
2∥SmoothGrad(fw,c(X) − f∗

c(X))(X)∥22
ϵi2

log(2W 2)

]

≤
L∑

i=1

[
sup

w
−i∈W

L2
w
(B2 + σ2d) log(2W 2)

ϵ2
bi

2

ϵi2
]

≤ log(2W 2)(B2 + σ2d)
∏L

i=1 γ
2
i ai

2

ϵ2

×
L∑

k=1

[bk2(
∑L

i=k

∏i
j=1 γjaj)

2

αk
2a2k

]

≤
log(2W 2)(B2 + σ2d)

∏L
i=0 γ

2
i ai

2(
∑L

i=1

∏i
j=1 γiai)

2

ϵ2

×
L∑

k=0

[ bk
2

αk
2a2k

]

≤
4 log(2W 2)(B2 + σ2d)

∏L
i=1 γ

2
i ai

2
(∑L

i=1

∏i
j=1 γjaj

)2

ϵ2

×
L∑

i=1

[ bi
2

αi
2a12i

]

=
C

ϵ2
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where C is

C = 4 log(2W 2)(B2 + σ2d)

×
[ L∏

i=1

γ2
i ai

2
( L∑

i=1

i∏

j=1

γjaj
)2
[

L∑

i=1

bi
2/3

ai2/3

]3]

With the above covering-number bound, we use the Dudley entropy integral bound (Bartlett et al.,
2017) bounding the Rademacher complexity of ∥SmoothGrad(fw,X) − SmoothGrad(f∗,X)∥2|S
as

R(∥SmoothGrad(fw,X)− SmoothGrad(f∗,X)∥2|S)

≤ inf
α≥0

{
4α√
n

≤ inf
α≥0

{
4α√
n
+

12
√
C

n
log(

√
n

α
)

}

≤ 4

n3/2
+

18 log(n)
√
C

n

≤ 4

n3/2
+

[
18 log(n)

n
4 log(2W 2)(B + σ

√
d)×




L∏

i=1

γiai
( L∑

i=1

i∏

j=1

γjaj
)
[

L∑

i=1

bi
2/3

ai2/3

]3/2


Here, the last two inequalities follow from choosing α = 1/n. Therefore, we have the following
bound:

R(∥SmoothGrad(fw,X)− SmoothGrad(f∗,X)∥2|S)

≤O
(
(B + σ

√
d)Lw log(n) log(D)

n

( L∑

i=1

∥Wi∥2/32,1

∥Wi∥2/32

)3/2
)

Therefore, based on the Rademacher complexity-based generalization bound (?), for every ω > 0
with probability at least 1− ω we have for every w ∈ W:

1

n

n∑

i=1

[∥SmoothGrad(fw,c,xi)− SmoothGrad(f∗
c ,xi)∥2]

−E [∥SmoothGrad(fw,c, X)− SmoothGrad(f∗
c , X)∥2]

≤O
(
c

√
log(1/ω)

n

+

√
d(B +

√
dσ)Lw log(n) log(D)

σn

( L∑

i=1

∥Wi∥2/32,1

∥Wi∥2/32

)3/2
)
,

which assuming that B = Ω(
√
dσ) is the same as

ϵgen(fw) ≤ O
(
c

√
log(1/ω)

n

+

√
dBLw log(n) log(D)

σn

( L∑

i=1

∥Wi∥2/32,1

∥Wi∥2/32

)3/2
)
.

Thus, the proof is complete.

B EXPERIMENTAL RESULTS

B.1 ON THE GENERALIZATION GAP

Visualizing Feature Importance. We verify the observation that generalizable interpretations re-
quire more data through qualitative gradient-based methods. Figure 6 contains a full version of qual-

19



Figure 4: Grad-CAM comparisons with EfficientNet-V2-S. As we increase the number of training
samples from 6.25% (sf = 16) of the training set, to using 50% of the training set, then to pre-
training on ImageNet plus fine-tuning with 50% training data, we observe that model pairs generate
increasingly consistent interpretations.

itative experiment results on Caltech-256 (Griffin et al., 2022), with the simple gradient method (Si-
monyan et al., 2013), SmoothGrad (Smilkov et al., 2017), integrated gradients (Sundararajan et al.,
2017) and DeepLift (Shrikumar et al., 2017). We observe that large-scale pre-training on ImageNet
significantly improves model interpretations, in terms of visual fidelity, localization meaningfulness
and generalization ability to unseen test samples. Figures 4 and 5 depict results for convolutional
neural network architectures, where we vary the number of training samples from Pretrain, to 50%,
25%, 12.5%, 6.25%, then visualize the localization intersections between GradCAM (Selvaraju
et al., 2017) interpretations. We consistently observe that while it is possible for models trained
on 6.25% of the training set to generate aligned activation maps on seen training samples, they are
unable to transfer this localization agreement to unseen test samples.

Quantifying Feature Differences. Using integrated gradients (Sundararajan et al., 2017) in Table
2, we report the rank correlation and top-100 salient pixels intersection. Most importantly, as the
split factor increases, the generalization errors across measurements, datasets and network architec-
tures increase. Furthermore, with increasing split factor, the correlation rank coefficient decreases;
the saliency pixel intersection % decreases. These changes all point to the fact that training with
fewer samples widens the interpretation generalization error, and worsens the disagreement between
gradient-based interpretations. To further verify that generalization of network interpretations are
more severely impacted than network predictions (by decreasing the training set size), in Figure 7,
we plot the normalized Spearman correlation of interpretations against that of softmax predictions.
We observe that with small and disjoint train sets, the quality and consistency of interpretation maps
drops more rapidly than that of logit predictions.

B.2 GRADIENT-BASED INTERPRETATIONS

We report the complete results on the SmoothGrad (Smilkov et al., 2017) regularization effect in
Figures 8-15. Across different network architectures and datasets, we verify that first, the average
gradient norm difference increases as the number training samples decreases; subsequently, that
SmoothGrad serves as a regularizer to decrease gradient difference and increase alignment; lastly,
that increasing the number of Gaussian vectors m and increasing the noise standard deviation σ
hyperparameters of SmoothGrad amplifies this regularization effect. This corroborates our message
that more training data is needed for well-aligned gradients, and is consistent with visual results
by Smilkov et al. (2017), which demonstrated that SmoothGrad with increasing m,σ enhances the
meaningfulness of gradient-based interpretations.
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Figure 5: Grad-CAM comparisons with ResNet models. As we increase the number of training
samples from 6.25% (sf = 16) of the training set, to using 50% of the training set, then to pre-
training on ImageNet plus fine-tuning with 50% training data, we observe that model pairs generate
increasingly consistent interpretations.

Rank Correlation & Saliency Pixel Intersection by Split Factor

EfficientNet-V2-S ConvNeXt-Tiny

sf Rank C ↑ Px % ↑ Rank C ↑ Px % ↑

CIFAR-10

2 .51 ± .04 37.1 ± 2.5 .43 ± .02 37.9 ± 2.6

4 .49 ± .03 33.1 ± 3.2 .41 ± .02 35.7 ± 2.0

8 .38 ± .04 27.7 ± 1.9 .38 ± .02 34.6 ± 1.6

16 .35 ± .03 26.4 ± 2.9 .36 ± .02 33.6 ± 1.4

Caltech-256

2 .19 ± .01 12.7 ± 2.0 .25 ± .06 12.3 ± 0.9

4 .17 ± .04 9.5 ± 1.1 .22 ± .04 10.6 ± 1.6

8 .15 ± .03 9.1 ± 1.0 .20 ± .08 9.6 ± 1.3

16 .14 ± .03 8.4 ± 1.9 .14 ± .03 8.5 ± 1.2

TinyImageNet

2 .25 ± .06 26.3 ± 2.4 .11 ± .02 23.6 ± 2.6

4 .22 ± .04 26.8 ± 3.3 .10 ± .03 23.3 ± 1.2

8 .20 ± .08 23.8 ± 2.0 .08 ± .02 20.6 ± 1.0

16 .14 ± .03 20.8 ± 3.5 .06 ± .01 20.1 ± 1.2

Table 2: Rank correlation coefficient and saliency pixel intersection on the test set, for the interpre-
tations of neural nets trained with a training set split factor of sf = 2, 4, 8, 16.

B.3 INTERPRETATIONS IN THE PARAMETER SPACE

We present additional parameter space interpretations with CKA (Kornblith et al., 2019) in 16-25,
where we evaluate the similarities of layer-wise representations of the same image across differ-
ent models, as a function of train-set split size. We report detailed results using both linear and
kernel CKA; darker colours indicate smaller self-similarities while lighter colors indicate greater
self-similarities close to 1.0 (perfect agreement). As the split factor sf decreases, the cross-network
representation self-similarities also decrease, meaning that interpretations are more inconsistent in
the parameter space with fewer training data.
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Figure 6: Different gradient-based interpretation methods tested on Caltech-256. We compare the
fidelity, localization meaningfulness and train-test generalization abilities of interpretations, for Pre-
train and the 6.25% experimental settings. We observe that the generalization and performance gaps
widen for interpretations generated by models trained on smaller, disjoint training sets.
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(a) Caltech-256 interpretation-classification correla-
tions.

(b) TinyImageNet interpretation-classification correla-
tions.

Figure 7: Normalized Spearman correlation of network interpretations against softmax predictions
for Caltech-256 and TinyImageNet. As sf increases from 2 to 16 and models are trained with
smaller disjoint train sets, the rank correlation of test set interpretations drop more acutely than that
of network predictions.
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(a) m = 1 (CIFAR-10, ResNet-18) (b) m = 5 (CIFAR-10, ResNet-18)

(c) m = 20 (CIFAR-10, ResNet-18) (d) m = 50 (CIFAR-10, ResNet-18)

(e) m = 1 (TinyImageNet, ResNet-18) (f) m = 5 (TinyImageNet, ResNet-18)

(g) m = 20 (TinyImageNet, ResNet-18) (h) m = 50 (TinyImageNet, ResNet-18)
Figure 8
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(a) m = 1 (Caltech-256, ResNet-50) (b) m = 5 (Caltech-256, ResNet-50)

(c) m = 20 (Caltech-256, ResNet-50) (d) m = 50 (CIFAR-10, ResNet-50)

(e) m = 1 (CIFAR-10, EfficientNet-V2-S) (f) m = 5 (CIFAR-10, EfficientNet-V2-S)

(g) m = 20 (CIFAR-10, EfficientNet-V2-S) (h) m = 50 (CIFAR-10, EfficientNet-V2-S)
Figure 9
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(a) m = 1 (Caltech-256, EfficientNet-V2-S) (b) m = 5 (Caltech-256, EfficientNet-V2-S)

(c) m = 20 (Caltech-256, EfficientNet-V2-S) (d) m = 50 (Caltech-256, EfficientNet-V2-S)

(e) m = 1 (TinyImageNet, EfficientNet-V2-S) (f) m = 5 (TinyImageNet, EfficientNet-V2-S)

(g) m = 20 (TinyImageNet, EfficientNet-V2-
S)

(h) m = 50 (TinyImageNet, EfficientNet-V2-
S)

Figure 10
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(a) m = 1 (CIFAR-10, ConvNeXt-Tiny) (b) m = 5 (CIFAR-10, ConvNeXt-Tiny)

(c) m = 20 (CIFAR-10, ConvNeXt-Tiny) (d) m = 50 (CIFAR-10, ConvNeXt-Tiny)

(e) m = 1 (Caltech-256, ConvNeXt-Tiny) (f) m = 5 (Caltech-256, ConvNeXt-Tiny)

(g) m = 20 (Caltech-256, ConvNeXt-Tiny) (h) m = 50 (Caltech-256, ConvNeXt-Tiny)
Figure 11
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(a) m = 1 (TinyImageNet, ConvNeXt-Tiny) (b) m = 5 (TinyImageNet, ConvNeXt-Tiny)

(c) m = 20 (TinyImageNet, ConvNeXt-Tiny) (d) m = 50 (TinyImageNet, ConvNeXt-Tiny)

(e) m = 1 (CIFAR-10, ViT-B-16) (f) m = 5 (CIFAR-10, ViT-B-16)

(g) m = 20 (CIFAR-10, ViT-B-16) (h) m = 50 (CIFAR-10, ViT-B-16)
Figure 12
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(a) m = 1 (Caltech-256, ViT-B-16) (b) m = 5 (Caltech-256, ViT-B-16)

(c) m = 20 (Caltech-256, ViT-B-16) (d) m = 50 (Caltech-256, ViT-B-16)

(e) m = 1 (TinyImageNet, ViT-B-16) (f) m = 5 (TinyImageNet, ViT-B-16)

(g) m = 20 (TinyImageNet, ViT-B-16) (h) m = 50 (TinyImageNet, ViT-B-16)
Figure 13
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(a) m = 1 (CIFAR-10, MLP-Mixer) (b) m = 5 (CIFAR-10, MLP-Mixer)

(c) m = 20 (CIFAR-10, MLP-Mixer) (d) m = 50 (CIFAR-10, MLP-Mixer)

(e) m = 1 (Caltech-256, MLP-Mixer) (f) m = 5 (Caltech-256, MLP-Mixer)

(g) m = 20 (Caltech-256, MLP-Mixer) (h) m = 50 (Caltech-256, MLP-Mixer)
Figure 14
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(a) m = 1 (TinyImageNet, MLP-Mixer) (b) m = 5 (TinyImageNet, MLP-Mixer)

(c) m = 20 (TinyImageNet, MLP-Mixer) (d) m = 50 (TinyImageNet, MLP-Mixer)
Figure 15

(a) CIFAR-10, ResNet-18 (b) TinyImageNet, ResNet-18

Figure 16: Linear CKA interpretation comparisons for 6 layers of ResNet-18 and 50.

(a) CIFAR-10, ResNet-18 (b) Caltech-256, ResNet-50 (c) TinyImageNet, ResNet-18

Figure 17: Kernel CKA interpretation comparisons for 6 layers of ResNet-18 and 50.
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(a) CIFAR-10, EfficientNet-V2-
S

(b) Caltech-256, EfficientNet-
V2-S

(c) TinyImageNet, EfficientNet-
V2-S

Figure 18: Linear CKA interpretation comparisons for 6 layers of EfficientNet-V2-S.

(a) CIFAR-10, EfficientNet-V2-
S

(b) Caltech-256, EfficientNet-
V2-S

(c) TinyImageNet, EfficientNet-
V2-S

Figure 19: Kernel CKA interpretation comparisons for 6 layers of EfficientNet-V2-S.

(a) CIFAR-10, ConvNeXt-Tiny (b) Caltech-256, ConvNeXt-Tiny
(c) TinyImageNet, ConvNeXt-
Tiny

Figure 20: Linear CKA interpretation comparisons for 6 layers of ConvNeXt-Tiny.
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(a) CIFAR-10, ConvNeXt-Tiny (b) Caltech-256, ConvNeXt-Tiny
(c) TinyImageNet, ConvNeXt-
Tiny

Figure 21: Kernel CKA interpretation comparisons for 6 layers of ConvNeXt-Tiny.

(a) CIFAR-10, ViT-B-16 (b) Caltech-256, ViT-B-16 (c) TinyImageNet, ViT-B-16

Figure 22: Linear CKA interpretation comparisons for 6 layers of ViT-B-16.

(a) CIFAR-10, ViT-B-16 (b) Caltech-256, ViT-B-16 (c) TinyImageNet, ViT-B-16

Figure 23: Kernel CKA interpretation comparisons for 6 layers of ViT-B-16.
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(a) CIFAR-10, MLP-Mixer (b) Caltech-256, MLP-Mixer (c) TinyImageNet, MLP-Mixer

Figure 24: Linear CKA interpretation comparisons for 6 layers of MLP-Mixer.

(a) CIFAR-10, MLP-Mixer (b) Caltech-256, MLP-Mixer (c) TinyImageNet, MLP-Mixer

Figure 25: Kernel CKA interpretation comparisons for 6 layers of MLP-Mixer.
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