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Abstract

Conditional generative adversarial networks (cGANs)
target at synthesizing diverse images given the input condi-
tions and latent codes, but unfortunately, they usually suffer
from the issue of mode collapse. To solve this issue, previ-
ous works [47, 22] mainly focused on encouraging the cor-
relation between the latent codes and their generated im-
ages, while ignoring the relations between images generat-
ed from various latent codes. The recent MSGAN [27] tried
to encourage the diversity of the generated image but only
considers “negative” relations between the image pairs.

In this paper, we propose a novel DivCo framework to
properly constrain both “positive” and “negative” rela-
tions between the generated images specified in the latent
space. To the best of our knowledge, this is the first attemp-
t to use contrastive learning for diverse conditional image
synthesis. A novel latent-augmented contrastive loss is in-
troduced, which encourages images generated from adja-
cent latent codes to be similar and those generated from
distinct latent codes to be dissimilar. The proposed latent-
augmented contrastive loss is well compatible with var-
ious cGAN architectures. Extensive experiments demon-
strate that the proposed DivCo can produce more diverse
images than state-of-the-art methods without sacrificing vi-
sual quality in multiple unpaired and paired image genera-
tion tasks. Training code and pretrained models are avail-
able at https://github.com/ruiliu-ai/DivCo.

1. Introduction
Generative adversarial network (GAN) [9] has shown

great potential to capture complex distributions and gen-
erate high-dimensional samples since its first introduction
in 2014. The follow-up years witnessed its great progress-
es and successes in synthesizing realistic high-resolution
images [35, 28, 1, 18, 19, 3]. Based on GANs, condi-
tional generative adversarial networks (cGANs) [29] were
proposed, which focus not only on producing realistic im-
ages but more on preserving the input conditional informa-
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Figure 1. 2D toy experiment for demonstrating the generation
distribution learned with different regularization terms. (a) The
ground-truth distributions for the two different classes, each of
which is a Gaussian mixture model. (b) The generated samples
from the learned distribution by the latent regression loss [47]
shows its weakness in covering all modes of the ground truths. (c)
The generated samples from the learned distribution by the mod-
e seeking loss [27] shows similar patterns regardless of different
classes. (d) The generated samples from the learned distribution
by our proposed latent-augmented contrastive loss demonstrates
an unbiased distribution which is properly dependent on both con-
ditional input and latent codes.

tion. For example, ACGANs [32] generated diverse im-
ages conditioned on class labels. Pix2pix [16] and Cycle-
GAN [46] translated images across two characteristic do-
mains to change their visual styles under paired and un-
paired settings, respectively. There exist other cGANs that
condition on input images, e.g. super-resolution [21], style
transfer [23, 22], inpainting [41], denoising [4], etc., as well
as cGANs conditioned on text descriptions [44, 43, 40].

Real-world scenarios expect the synthetic samples to be
diverse and able to manipulate flexibly. However, all the
applications mentioned above suffer from the problem of
mode collapse to some extent, even though randomly sam-
pled latent codes are added as additional inputs. To deal
with this shortcoming, many works attempted to enhance
the correlation between input latent codes and output im-
ages to ensure that the latent codes have control over the
generated images. BicycleGAN [47] and DRIT [22] adopt-
ed a latent regression loss term, which encourages the mod-



el to recover the input latent code from the generated im-
ages. However, the effect of this term on boosting the gener-
ation diversity is far from satisfactory (see Fig. 1(b)), which
is due to the fact that this term only considers the relation
between individual latent codes and their generated images.
The relations between images generated from various latent
codes are more valuable but were neglected. MSGAN [27]
tried to tackle the problem and proposed a mode seeking
loss, which aims to improve generation diversity by max-
imizing the dissimilarity of two arbitrary images. Howev-
er, the distance between two sampled latent codes may be
close to each other and their synthesized images should not
be pushed away. By imposing such strong yet sub-optimal
constraints between pairs of generated images, the learned
distribution easily turns out to be biased, i.e. the generation
results only depend on latent codes while ignoring the con-
ditional input (see Fig. 1(c)). Such a phenomenon can also
be observed in our later experiments (refer to Fig. 4(b) and
Fig. 5).

We argue that the unsatisfaction of MSGAN [27] de-
rives from its strategy on always treating any image pairs as
“negative” pairs while ignoring “positive” pairs. However,
they should be equally crucial for the generator to correctly
capture the semantics of various latent codes. Towards this
end, we attempt to learn unbiased distributions by consid-
ering the “positive” and “negative” relations simultaneous-
ly in the form of contrastive learning. Contrastive learning
was widely applied in self-supervised representation learn-
ing tasks [33, 39, 5, 11] and recently showed its great poten-
tial in conditional image synthesis [34, 17] by maintaining
the correspondences between each generated image and it-
s conditional input. In this work, we further demonstrate
how to adapt it to diverse conditional image synthesis by
our newly proposed latent-augmented contrastive loss.

Specifically, conditioned on the same class code, the in-
troduced latent-augmented contrastive loss forces the visual
relations of the generated images to be correlated to the dis-
tances between their input latent codes, i.e. “positive” im-
ages with close latent codes should be similar while “neg-
ative” images with distinct latent codes should be far away
from each other in the feature space. Note that the crit-
ical view (“positive” or “negative”) selection in our pro-
posed framework is achieved via a novel latent augmen-
tation scheme, i.e. a positive code is sampled within a s-
mall hyper-sphere around the query code in the latent space
while negative ones are sampled outside that hyper-sphere.
As a result, the problem of mode collapse can be alleviated
to large extent by regularizing the generator on better under-
standing the structure of latent space. Better performance
on both learned distributions (Fig. 1(d)) and generation re-
sults (Section 4) indicate the effectiveness of our method.

Our contributions are summarized as three-fold:

• We for the first time adapt contrastive learning to en-
courage diverse image synthesis. The proposed Div-

Co learning scheme can be readily integrated into ex-
isting conditional generative adversarial networks with
marginal modifications.

• A novel latent-augmented contrastive loss is proposed
to discriminate the latent representations of generated
samples in a contrastive manner. The issue of mode
collapse in cGANs has been much alleviated.

• Extensive experiments in different conditional genera-
tion tasks demonstrate that our proposed method helps
existing frameworks improve the performance of di-
verse image synthesis without sacrificing the visual
quality of the generated images.

2. Related Work
Conditional generative adversarial network was first p-
resented in [29]. By feeding class labels into generator and
discriminator simultaneously, it successfully generate im-
ages with respect to the given class labels. To further en-
hance the relation between input class labels and generated
results, ACGAN [32] introduces an auxiliary classifier with
cross entropy loss for categorizing both real and generat-
ed samples correctly. Similar scheme is also used in semi-
supervised GANs [31, 6, 25]. After that, self-attention GAN
and its follow-up BigGAN verify the effectiveness of con-
ditional inputs on stabilizing and improving the training of
GANs [30, 42, 3]. Similarly, CocoGAN feeds into coor-
dinate conditions into the generator [14]. By changing the
modality of conditions into texts, text-to-image generation
realizes to synthesize images with respect to the given sen-
tences [44, 43, 40]. Nevertheless, image-to-image transla-
tion methods benefit from the development of cGANs most
due to the large quantity of applications based on image
processing. Pix2pix [16] and CycleGAN [46] translate d-
ifferent styles between two characteristic domains under
paired and unpaired settings respectively. There are other
applications of cGANs that condition on images such as
super-resolution [21], inpainting [41], denoising [4], do-
main translation [13, 8, 26] and so on [24, 15]. In this
work, we endorse these conditional image synthesis tasks
with the capability of generating more diverse samples with
marginal modifications to their original frameworks.
Contrastive learning was found effective in state-of-the-art
self-supervised learning methods [33, 39, 5, 11, 38]. They
generally cast the unsupervised visual representation learn-
ing as an instance discrimination task, where each unlabeled
training sample is treated as a unique class. A contrastive
loss [10, 33] is therefore introduced to make representation-
s of different views from the same image closer and keep
representations of different images away. How to properly
create the positive pairs becomes crucial in these methods,
which can be different randomly augmented versions of a s-
ingle image [5], a same image from various modalities [38],
and so on.
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Figure 2. The proposed DivCo framework for image-to-image translation for achieving diverse conditional image synthesis. For a condi-
tional image input y, we sample a query latent code z with a positive code z+ andN negatives z− from a prior Gaussian distribution, which
are fed into the generator G to obtain the generated samples x̂, x̂+, {x̂−i }

N
i=1. The generated samples are passed into an auxiliary encoder

E to obtain their corresponding feature representations f , f+, {f−
i }

N
i=1 and are supervised by the contrastive loss. Here the encoder E

shares weights with the encoding layers of the generator Genc. Note that we omit the original cGAN losses for better illustration.

In generative modeling, some recent works investigate
the use of contrastive loss for different objectives [34, 2, 17].
CUT [34] aimed to replace cycle-consistency loss with a
patch-wise contrastive loss for improving the performance
of unpaired image-to-image translation. They considered
positive pairs as images patches at the same location in two
image domains and negative ones as patches from differen-
t locations within a single domain. TUNIT [2] and Con-
traGAN [17] adopted contrastive losses for preserving the
learned style (domain class) codes and categorical labels on
the generated images respectively. Note that all the above
methods cannot be adopted for diverse image synthesis and
cannot deal with mode collapse as well. Our proposed Div-
Co is a totally different and novel contrastive learning strat-
egy, compared to the existing methods.

3. Method

Given an image dataset X and its associated condition
set Y , we would like to learn a generator G that synthe-
sizes diverse images in the domain of X following the giv-
en conditions Y . The generated images are expected to be
realistic and diverse simultaneously. Our proposed DivCo
learning scheme can operate regardless of the exact form-
s of the condition dataset Y , e.g. prior images for paired
or unpaired image-to-image translation tasks (Fig. 2), class
labels for class label-conditional generation tasks (Fig. 3),
etc. The key innovation of our DivCo lies in the latent-
augmented contrastive regularization term, which effective-
ly avoids mode collapse and encourages more diverse con-
ditional image synthesis. Note that this term can be seam-
lessly integrated into the training of any existing conditional
generative adversarial network (cGANs) of different gener-
ation tasks without modifying their architectures.

Formally, given an arbitrary condition y ∈ Y and a la-
tent code z ∼ N (0, 1) sampled from a prior Gaussian dis-
tribution, the generator G takes both y and z as inputs and
yields an output image x̂ = G(z, y). Ideally, x̂ should be
determined by the condition y and also be influenced by the
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Figure 3. The proposed DivCo framework for class-conditioned
image generation. Here y represents conditional class label. Here
the encoder E shares weights with the encoding layers of discrim-
inator D.

latent code z.
Adversarial loss. The loss is adopted to ensure that x̂ is
vivid enough to be indistinguishable from real images X
by a discriminator D. G and D play a minimax game and
finally converge to a Nash equilibrium where the synthetic
images cannot be distinguished from real images by D any
more. The adversarial loss is formulated as

Ladv(G,D) = Ex∼X ,y∼Y [logD(x, y)]

+ Ey∼Y,z∼N (0,1) [log (1−D(G(z, y), y)] .
(1)

However, it can only encourage the realism rather than the
diversity of the generated images.
Diverse image synthesis via contrastive learning. We aim
to properly regularize cGANs on diverse conditional image
synthesis with properly designed learning objectives instead
of modifying the original architectures to adapt to different
conditional generation tasks.

Intuitively, to avoid mode collapse, we should strengthen
the influence of z to the generated image x̂while preserving
the fitness of the image x̂ to the conditional input y. In oth-
er words, the variations of x̂ should be intently correlated
to the manipulation of z. To achieve this goal, we propose
to adopt contrastive learning, where the goal is to associate
a query image and its “positive” sample, in contrast to oth-
er “negatives” samples at the same time for supervising the
image generation process. The most critical design in con-
trastive learning is how to select the “positive” and “nega-
tive” pairs.

Specifically, given a certain condition y, we wish im-



ages generated from close (“positive”) latent codes to be
visually similar and images from far-away (“negative”) la-
tent codes to be visually dissimilar. For a query generated
image x̂ = G(z, y) generated from a latent code z, we de-
note its “positive” code as z+ and the corresponding gen-
erated image can be represented as x̂+ = G(z+, y). Sim-
ilarly, the generated images for a series of “negative” la-
tent code {z−i }Ni=1 can be represented as x̂−i = G(z−i , y)
for i = 1, . . . , N . Taking advantages of an auxiliary en-
coder E (will be discussed), we extract feature representa-
tions for generated images, i.e., f = E(x̂), f+ = E(x̂+),
f−i = E(x̂−i ). These representations are expected to be
discriminative and can be adopted in contrastive learning to
supervise the image generator G.

A novel regularization term, namely latent-augmented
contrastive loss, is proposed to regularize the generated im-
ages’ feature representations f, f+, f− by bringing f , f+

closer and spreading f , f− away. The regularization term
is formulated in the form of contrastive loss as

Lcontra(G) = Ey∼Y,z∼N (0,1) (2)[
− log

exp (〈f, f+〉/τ)
exp (〈f, f+〉/τ) +

∑N
i=1 exp (〈f, f

−
i 〉/τ)

]
,

where 〈·, ·〉 denotes the inner product between two normal-
ized feature vectors to measure their similarity, and τ is a
temperature hyper-parameter for scaling the similarity. For
each query generated image x̂, we generate a positive sam-
ple x̂+ and multiple negative samples {x̂−i }Ni=1 in training.

We create positive and negative samples, x̂+ and {x̂−i },
for the latent-augmented contrastive loss by manipulating
the input latent codes, ẑ+ and {ẑ−i }. We observe that the
strategy for creating ẑ+ and {ẑ−i } has critical impact to the
contrastive learning (similar observations can be found in
the self-supervised representation learning tasks [5, 11] and
image synthesis [34, 2]). We propose a latent-augmentation
strategy to generate positive and negative samples for con-
trastive learning on-the-fly. Note that such a newly pro-
posed augmentation strategy is conducted on the latent s-
pace rather than the image manifold as existing unsuper-
vised learning methods [5, 11], to adapt to our generation
tasks. Specifically, given a query latent code z ∼ N (0, 1),
we define a small hyper-sphere with radius R centered at
the query code z. Consequently, a positive latent code z+

can be randomly sampled as a vector within the sphere
z+ = z + δ, where δ is a randomly sampled vector from
a uniform distribution δ ∼ U [−R,R], while the negative
latent codes can be sampled as random vectors outside the
sphere within the latent space, i.e., z−i ∼ {z−i

∣∣ z−i ∼
N (0, 1) ∩ |z−i − z| � R} for i = 1, . . . , N where � is
element-wise greater-than operator.

The generator G itself in cGANs is able to encode dis-
criminative feature representations as discussed in [34].

Therefore, we directly adopt the encoding layers of the gen-
erator as our auxiliary encoder E, as shown in Fig. 2. Note
that since class-conditioned image generation tasks do not
require encoding layers in the generator, we use the encod-
ing layers of the conditional discriminator instead, which
are also able to encode discriminative features, as shown
in Fig. 3. By exploiting the off-the-shelf generators or
discriminators for extracting feature representations in the
contrastive learning, we could avoid modifying the original
architectures of different conditional generation methods,
showing the plug-and-play functionality of our method.
Overall training objective. Our proposed latent-
augmented contrastive loss can be readily integrated into
existing cGANs for different conditional generation tasks,
i.e. simply adding our proposed latent contrastive loss with
their original training objectives. The overall training ob-
jective can be formulated as

max
D

min
G
Ladv(G,D) + λcontraLcontra(G) + λoptLopt(G),

(3)
where λopt and λcontra are hyper-parameters balancing dif-
ferent losses in different generation tasks. Lopt represents
an optional regularization term of different conditional gen-
eration tasks.
Lopt is not required for class label-conditional generation

tasks. For paired image-to-image translation, the Lopt regu-
larization term can be formed as a pix-to-pix reconstruction
loss

Lopt(G) = Ex∼X ,y∼Y,z∼N (0,1) [‖G(z, y)− x‖1] . (4)

For unpaired image-to-image translation, Lopt can be
formed as the cyclic reconstruction loss,

Lopt(G) =Ex∼X ,y∼Y,z∼N (0,1)

[
‖F (z,G(z, y))− y‖1

+ ‖G(z, F (z, x))− x‖1
]
, (5)

where F is an auxiliary generator which learns the inverse
mapping of G from X to Y .
Discussion. In this work, we for the first time investigate
adopting contrastive learning for diverse conditional image
synthesis. We propose a novel latent augmentation strategy
for creating “positive” and “negative” samples in the latent
space, while all the previous contrastive losses [11, 5, 34, 2]
focus on image-based augmentation strategies that cannot
be used for the diverse image synthesis task.

In diverse image synthesis, previous regularization
terms [47, 22, 27] on encouraging diversity synthesis failed
on jointly modeling positive and negative relations between
the generated images, which are sub-optimal solutions. In
addition, unlike mode seeking loss that actually constrains
the generator to an opposite direction to pixel-level recon-
struction losses, which easily breaks down (see Fig. 4), our
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(a) Facades dataset (b) Maps dataset

Figure 4. Diversity comparison in the paired image-to-image translation task on Facades and Maps datasets. MSGAN produces diverse
images but sacrifices the visual quality and even sometimes cannot condition on the input labels. BicycleGAN produces more realistic
images but its results lack diversity. Our proposed method synthesizes both realistic and diverse images.

Table 1. Quantitative results of paired image-to-image translation
on Facades and Maps dataset.

Facades
Metric BicycleGAN [47] MSGAN [27] Proposed
NDB ↓ 8.00± 1.00 7.60± 0.94 7.30± 0.66

JSD ↓ 0.0427± 0.0045 0.0392± 0.0088 0.0374± 0.0098

LPIPS ↑ 0.2355± 0.0067 0.2677± 0.0259 0.2531± 0.0108

FID ↓ 80.34± 1.46 78.32± 3.32 75.96± 1.25

Maps
Metric BicycleGAN [47] MSGAN [27] Proposed
NDB ↓ 8.90± 1.86 8.60± 1.98 7.80± 2.35

JSD ↓ 0.0956± 0.0030 0.1066± 0.0023 0.0806± 0.0021

LPIPS ↑ 0.2473± 0.0226 0.2306± 0.0287 0.2538± 0.0382

FID ↓ 130.74± 2.63 169.97± 8.62 109.54± 4.41

latent-augmented contrastive loss can be combined with o-
riginal cGAN losses in a harmonious manner, leading to
better performance in diverse image synthesis.

4. Experiment

4.1. Implementation details

We evaluate our proposed DivCo framework with exten-
sive qualitative and quantitative experiments. We integrate
the proposed latent-augmented contrastive loss in three con-
ditional generation tasks, including paired image-to-image
translation, unpaired image-to-image translation and class
label-conditioned generation. We would maintain their o-

riginal network architectures and supervision signals. We
only add our latent-augmented contrastive loss to their opti-
mization objectives and adjust the relative weights between
the loss terms. Empirically, the number of negative samples
N is set to 10, the balancing weight for latent-augmented
contrastive loss λcontra is set to 1 and the temperature τ is
set to 1 throughout our experiments if not particularly indi-
cated. For the radius R which depends on the dimension of
latent code to some extent, is set to 0.01 in image-to-image
translation tasks and set to 0.001 in class-conditioned image
generation task.

Baselines. For paired image-to-image translation tasks,
we choose BicyleGAN [47] as our baseline. For unpaired
image-to-image translation, DRIT [22] is chosen as our
baseline. Both of them utilize a latent regression loss for
building correlation between latent codes and generated im-
ages. We remove their original latent regression loss and
then add mode seeking loss [27] and our proposed latent-
augmented contrastive loss separately for fair comparison.
As for class-conditioned generation, we take DCGAN [35]
as our baseline following [27]. Since its generator do not
require encoding layers, we take all but the topmost layers
of the discriminator as our auxiliary encoder for calculating
latent-augmented contrastive loss.

Datasets. We use Facades [7] and Maps [16] dataset-
s for evaluating paired image-to-image translation perfor-
mance. For unpaired image-to-image translation, we take
Yosemite [46] and Dog2Cat [22] datasets for evaluation.
CIFAR10 [20] is utilized for evaluating class-conditioned
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Figure 5. Diversity Comparison in the unpaired image-to-image translation task on shape-variant dataset Dog⇔Cat. We manipulate the
latent codes from z1 to z4 where z1 is an all-negative-one vector, z4 is an all-one vector, and z2 and z3 are the interpolation of z1 and z4
with equal intervals. DRIT produces images without shape variation (mode collapse). MSGAN produces images that are badly conditioned
on the input image. Our proposed method synthesizes diverse images by either changing the input condition or manipulating the input
latent code.

generation results.

Evaluation metrics. We evaluate the performance of
the compared methods via calculating following evaluation
metrics. NDB and JSD are two bin-based evaluation met-
rics for measuring the similarities between generated dis-
tributions and real distributions [36]. Lower value means
higher similarity. Fréchet Inception Distance (FID), pro-
posed in [12], is used to measure the quality and diversity
of a set of generated images compared to real images by
feeding them into an Inception network [37]. Lower value
means higher visual quality and higher diversity. LPIPS is
used to measure the diversity of an image set by comput-
ing the average feature distance of all pairs of images [45].
Higher value means higher inter-sample diversity.

4.2. Paired image-to-image translation

We take BicycleGAN [47] as our baseline and sepa-
rately replace the latent regression loss with mode seek-
ing loss [27] and our proposed latent-augmented contrastive
loss for fair comparison. We show our generation results on
Facades dataset in Fig. 4(a). The generation results of MS-
GAN are diverse enough for each input condition, but the
visual quality drops drastically. On the contrary, the gen-
eration results of BicycleGAN and our method looks more
realistic. In addition, our method’s results show better gen-
eration diversity. Similar comparisons could be found on
the Maps dataset, as shown in Fig. 4(b). There is another in-
teresting finding that MSGAN produces similar patterns on



Table 2. Quantitative results of unpaired image-to-image translation on Cat⇔Dog and Yosemite (Winter⇔Summer) dataset.
Dataset Dog2Cat Cat2Dog

DRIT [22] MSGAN [27] Proposed DRIT [22] MSGAN [27] Proposed
NDB ↓ 5.20± 1.72 4.20± 1.32 3.60± 0.80 7.7± 1.00 6.30± 1.13 5.90± 1.04

JSD ↓ 0.0362± 0.0035 0.0285± 0.0042 0.0238± 0.0039 0.0440± 0.0036 0.0381± 0.0043 0.0345± 0.0063

LPIPS ↑ 0.1932± 0.0059 0.2057± 0.0052 0.2188± 0.0045 0.2544± 0.0145 0.2615± 0.0156 0.2686± 0.0214

FID ↓ 30.40± 1.82 27.46± 1.89 24.83± 2.40 21.54± 2.34 20.78± 1.09 19.25± 2.14

Dataset Winter2Summer Summer2Winter
DRIT [22] MSGAN [27] Proposed DRIT [22] MSGAN [27] Proposed

NDB ↓ 5.80± 2.34 5.00± 1.56 4.90± 1.30 6.30± 1.96 5.70± 1.01 5.40± 0.91

JSD ↓ 0.0584± 0.0079 0.0401± 0.0097 0.0338± 0.0059 0.0625± 0.0052 0.0595± 0.0080 0.0573± 0.0057

LPIPS ↑ 0.1801± 0.0021 0.1816± 0.0043 0.1869± 0.0053 0.1721± 0.0072 0.1795± 0.0080 0.1926± 0.0093

FID ↓ 47.58± 2.12 46.37± 1.90 45.79± 2.45 56.02± 2.10 53.32± 1.67 51.57± 1.92
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Figure 6. Diversity comparison in the unpaired image-to-image
translation task on shape-invariant dataset Winter2Summer. Only
the generation results from our proposed method shows the varia-
tion from sunshine appearing to totally disappearing, compared to
two other methods.

the 3-th and 4-th columns regardless of the input condition-
al label maps, which is consistent to the toy demonstration
in Fig. 1.

The quantitative results on Facades and Maps datasets
are recorded in Table 1. As one can see, our method per-
forms best in terms of all the evaluation metrics except for
LPIPS on Facades. The reason is that LPIPS only measure
the diversity score of a set of images by their average feature
distance while the realism is not taken into consideration.

4.3. Unpaired image-to-image translation

In unpaired image-to-image translation, we choose
DRIT [22] as our baseline and replace its original latent
regression loss with mode seeking loss and our latent con-

trastive loss for encouraging the diversity of the generation
results. We choose a shape-variant dataset Cat↔Dog and a
shape-invariant dataset Winter↔Summer for comparison.

The synthesized images on Cat↔Dog dataset are shown
in Fig. 5. We highlight the advantages of our approach’s
generation results over other methods by the rectangles in
different colors. For the generation results from DRIT, the
green rectangle shows its incapability of synthesizing di-
verse images according to various latent codes. For the re-
sults from MSGAN, the blue rectangle highlights its inca-
pability of synthesizing diverse images with different con-
ditional inputs, which could also be observed in Fig. 1
and Fig. 4(b). The synthesized images from our proposed
method show much higher diversity than those of previous
works, as highlighted in the red cross. Our generated results
also fit the different input conditions much better than MS-
GAN. More diverse generation results can also be observed
in Winter2Summer dataset in Fig. 6.

The quantitative results of different approaches on the
two datasets are summarized in Table 2. As we see, the pro-
posed method performs best in all evaluation metrics under
different conditions compared to two other state-of-the-art
diverse image synthesis methods, which demonstrate the ef-
fectiveness of our method on this task.

4.4. Class-conditioned image generation
We choose DCGAN [35] as our baseline for comparing

the performance on class-conditioned image generation. S-
ince there is no encoder-like architecture in the generator of
DCGAN and the dimension of intermediate discriminator
feature does not match that of latent code, the latent regres-
sion loss is not applicable. Table 3 shows the quantitative
results of NDB and JSD for each class. For calculating ND-
B and JSD, all training samples are first clustered into 50
groups, and each generated sample is then assigned to a n-
earest group. The NDB score and JSD are then calculated
according to the group proportions. We also calculate FID
for all generated images, as shown in Table 4. Our method
performs best in terms of all these evaluation metrics.



Table 3. NDB and JSD of the generated images by different compared methods on CIFAR10.

Metric Method airplance automobile bird cat deer

NDB↓
DCGAN [35] 17.90± 1.56 18.40± 1.82 13.80± 2.36 14.50± 1.90 18.90± 2.18

MSGAN [27] 17.40± 2.80 17.10± 2.07 14.10± 2.62 16.50± 2.85 20.70± 2.45

Proposed 16.30± 2.75 16.90± 1.92 12.80± 2.14 10.70± 2.49 14.60± 1.96

JSD↓
DCGAN [35] 0.0098± 0.0001 0.0125± 0.0001 0.0082± 0.0001 0.0086± 0.0001 0.0069± 0.0001

MSGAN [27] 0.0095± 0.0001 0.0121± 0.0001 0.0083± 0.0002 0.0154± 0.0001 0.0072± 0.0001

Proposed 0.0091± 0.0001 0.0119± 0.0001 0.0076± 0.0001 0.0059± 0.0002 0.0058± 0.0001

dog frog horse ship truck

NDB↓
DCGAN [35] 14.50± 1.83 24.00± 1.55 24.60± 2.36 18.50± 2.51 15.90± 1.33

MSGAN [27] 11.20± 1.16 22.30± 2.90 22.90± 1.83 16.40± 3.36 15.00± 2.69

Proposed 11.00± 2.24 20.20± 2.22 20.90± 2.76 16.30± 2.29 14.60± 2.28

JSD↓
DCGAN [35] 0.0088± 0.0001 0.0150± 0.0001 0.0171± 0.0001 0.0112± 0.0001 0.0088± 0.0001

MSGAN [27] 0.0072± 0.0003 0.0134± 0.0001 0.0154± 0.0001 0.0096± 0.0001 0.0084± 0.0001

Proposed 0.0058± 0.0002 0.0124± 0.0001 0.0126± 0.0001 0.0085± 0.0001 0.0078± 0.0002

Table 4. FID of the generated images by different compared meth-
ods on CIFAR10 dataset.

Method DCGAN [35] MSGAN [27] Proposed
FID ↓ 28.34± 0.12 27.09± 0.14 25.21± 0.20

4.5. Sensitivity Analysis

We perform sensitivity analysis for 3 hyper-parameters
in our framework: weight of latent-augmented loss λcontra,
temperature for scaling similarity τ , and the radius of hyper-
sphere R in the class-conditioned image generation task.
We empirically set λcontra = 1, τ = 1, and R = 0.001.
We take FID as our metric for balancing both realism and
diversity. The FID results are plotted in Fig. 7.

As we can see, when the weight λcontra decreases, the
performance drops slightly and gradually approach the FID
value of original DCGAN (see Table 4). When λcontra is
greater than 3, the performance drops drastically as λcontra
increases, as Lcontra overwhelms the original cGAN loss,
leading to images of lower realism. The larger the radius of
hyper-sphere R is, the larger the distance between query
and positive latent codes tends to be, leading to a more
biased definition of “positive” and “negative”. However,
when R becomes smaller and gradually approaches 0, the
effect of modeling positive relations between images tends
to be weaker and make the proposed contrastive loss per-
forms similarly to the mode seeking loss in MSGAN. As
for the temperature τ , we find that only a proper value lead-
s to the best performance. Either higher or lower values
would make the latent-augmented contrastive loss generate
inferior results.
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Figure 7. Sensitivity analysis for the relative weight of latent-
augmented loss λcontra, temperature for scaling similarity τ , and
the radius of hyper-sphere R under class-conditioned image gen-
eration task.

5. Conclusion

In this paper we propose a novel framework DivCo
for dealing with mode collapse issue in conditional gen-
erative adversarial networks. We adapt contrastive learn-
ing to diverse image synthesis and propose a novel latent-
augmented contrastive loss. The proposed method could
be readily integrated into existing GAN-based conditional
generation approaches by integrating the latent-augmented
contrastive regularization term to their original optimization
objective. Experiments on multiple settings with various
datasets verify the superiority of our method to other state-
of-the-arts, both qualitatively and quantitatively.
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